Third Year Project Proposal: A 3D Map Editor
By Stuart Golodetz

Introduction
My idea is to write a fully-functional map editor in which users can design 3D worlds for games. The intention is for it to be reasonably similar in style to Valve’s Hammer editor.
Relevance
· It’s highly relevant to our Computer Graphics course. Not only will it involve implementing a number of things we only had time to touch upon during the course itself, like BSP tree generation and CSG, but also, as a project, it was initially inspired by one of the graphics practicals in Michaelmas term.
· It’s also relevant to our course in Object-Oriented Programming because I’m going to implement it in Java.

· Finally, it’s relevant to our Splines course because I’m hoping to have time to implement landscapes using what we’ve learnt about curved surfaces.

Main Features
· Creating and transforming (reflecting, resizing, rotating, translating and shearing) primitive and composite (solid) polygonal objects. At an implementation level, I intend to implement the interface through which such operations can be requested in 2D, by displaying three separate views of the world from different directions. These views will essentially be orthogonal projections onto a pair of axes.
· Planar brush splitting (splitting a brush into two pieces across a plane). At an implementation level, this will involve splitting all a brush’s polygons across a plane, then building a BSP tree for each half-brush and clipping a (very) large polygon on the plane to each of the trees to cover the gaps which necessarily arise.
· CSG operations (union, intersection and difference) on such objects. At an implementation level, this is expected to involve generating BSP trees for the objects involved, followed by performing the actual CSG operations using the generated trees.
· An interactive 3D view, so that users can “fly” through the world they have created and see what it looks like. I would like to allow object selection (though not object manipulation) in this view, which will involve some sort of picking technique.
· Loading and saving of maps. I could make life more interesting by writing code to load and save Quake-compatible .map files. The latter might prove tricky because .map files store their brushes as planes rather than polygons and I’m not really sure it’s worth it. Loading .map files, on the other hand, would be very useful.
Additional Ideas (if time permits – some of these are ideas for what I could do with it in the future, rather than over the duration of the project itself)
· Landscape areas, implemented using the curved surface techniques we’ve learnt this year.

· Undoing and redoing of commands. (This ties in directly with our Object-Oriented Programming course.)

· Texture-mapping of polygonal faces. At an implementation level, I intend to allow users to select individual faces in the 3D view, the same way that Hammer does it. I’m still undecided as to how exactly to approach texture coordinate specification. On the one hand, I could take the approach Hammer uses, which (as I understand it) entails figuring out which is the principal axis-aligned plane for a polygon; alternatively, I could allow the user to specify texture coordinates individually for each vertex, though this might prove a barrier to ease-of-use. Face selection will probably involve something similar to the picking technique mentioned above. I expect the implementation to be fairly intricate.
· AI paths of some sort. This will involve a design decision about how the AI will work for games for which this map editor creates levels. Because AI routing is very game-specific, it would make sense to separate this from the rest of the editor as much as possible, to make it easy to drop in different versions for different games.
· Level compilation (probably implemented as a separate project, possibly in C++). At an implementation level, I expect this to involve the following stages: (i) CSG union all the brushes, (ii) build a BSP tree for the level, (iii) generate the portals, (iv) perform a portal flood fill, (v) build the potentially visible set (PVS) and (vi) calculate the lightmaps. Calculating lightmaps is something that will require a lot of thought. I would be tempted to implement an acceptable Phong lighting model rather than dealing with the complexities of radiosity, but I’m not sure how good the results would be. Unfortunately, I suspect I lack the mathematical knowledge and ability to successfully implement a radiosity solution!
