Third Year Project : Report on “A 3D Map Editor”

Candidate Number: 35563
§ 1 Introduction (100 words)
This is a random test to see how long the introduction should ideally be. I’d have thought that anything more than about 200 words was overkill, and anything under 100 words would look like I can’t be arsed! If one takes the old adage of “tell ’em what you’re going to say, say it, then tell ’em what you said”, and cuts out the first and last bits, we’re left with “say it”, which should do just nicely considering I’m short of words. As it happens, this bit here is about 100 words. This is just about enough for me.

§ 2 Designing the editor

§ 2.1 GUI Design -> based on Hammer to an extent, menu-loading is entirely mine (though slightly dull to write about!)

§ 2.2 Code Design(?)
§ 3 Features of the editor (> 3600 words)
§ 3.1 Manipulation of simple and composite polyhedral brushes, design canvases, etc. (1000 words)
§ 3.2 The 3D view, picking, etc. (300 words)
§ 3.3 Constructive solid geometry (including hollowing and splitting) [credit Gary Simmons for the Game Institute course on it] (1000 words)
§ 3.4 Commands, undoing and redoing, etc. (200-300 words)
§ 3.5 Texturing, focusing on tricky stuff like the maths of fitting texture planes (300 words)
§ 3.5.1 Overview

§ 3.5.2 The underlying mathematics of texture planes
In addition to its texture, each face also has a texture plane, imagined as an axis-aligned plane infinitely tiled with the texture in question. The three planes we use for this are x = 0, y = 0 and z = 0. We pick the optimal one for a given face, namely the one whose normal is most similar to the face normal. For example, a face whose normal was (23, 9, -84) would have its texture tiled on the z = 0 plane, since -84 is the component of the normal with the largest (absolute) value.


The (imaginary) tiling of the texture on the plane depends on a rotation angle θ, which determines a pair of unit, orthogonal texture axes in the plane, hereafter referred to as the u and v axes:
	Plane
	u
	v

	x = 0
	(0, cos θ, -sin θ)
	(0, -sin θ, -cos θ)

	y = 0
	(cos θ, 0, -sin θ)
	(-sin θ, 0, -cos θ)

	z = 0
	(cos θ, -sin θ, 0)
	(-sin θ, -cos θ, 0)


Table ‎3‑1
Often, the user will specify the rotation angle through the interface (see ‎§ 3.5.4), but the axes can also sometimes be calculated directly as part of a plane-fitting process (see ‎§ 3.5.3).

Other texture parameters, namely offsets and scale factors in the u and v directions, also affect the tiling of the texture, but they are maintained separately, in practice, and don’t affect the actual axes
. Given the u and v axes, offsets ou and ov and scale factors su and sv, we could use the following equations to calculate the texture coordinates of a point p, which in practice would usually be a vertex of the face for which the texture plane was created:

[image: image1.wmf]ou

su

u

+

·

=

u

p



[image: image2.wmf]ov

sv

v

+

·

=

v

p


Figure ‎3‑1
As it happens, we choose to modify these equations slightly to take into account the width w and height h of the texture being applied
:

[image: image3.wmf]w

ou

su

u

÷

ø

ö

ç

è

æ

+

·

=

u

p



[image: image4.wmf]h

ov

sv

v

÷

ø

ö

ç

è

æ

+

·

=

v

p


Figure ‎3‑2
§ 3.5.3 Fitting planes

It’s sometimes convenient to be able to fit texture planes to vertices and their existing texture coordinates. The problem is essentially as follows:
Given v0, v1 and v2, their respective (u,v) texture coordinate pairs c0, c1 and c2 and the width and height of the texture to be applied, determine (if possible) the texture plane tp which would satisfy:


[image: image5.wmf][

]

i

i

c

v

s

coordinate

calculate

tp

i

=

Î

"

)

(

_

.

2

,

0

o


The problem as specified can be simplified immediately by observing that the u and v axes are actually 2D vectors in disguise … TODO
§ 3.5.4 The interface
§ 3.6 Landscapes, spline interpolation, matrix inversion, etc. (700 words)
§ 4 Testing the editor (< 500 words)
§ 4.1 The Test package, automated tests, reuse of proven test cases from previous projects, etc. (200-300 words)
I wrote a framework for automated tests, because they’re an invaluable bug-detection tool. A test case takes the result of a calculation (converted into a String) and compares it to an expected result String. If the two are not equal, the offending case is flagged when the test suite is run
. When it came to testing functions dealing with geometry, I reused some proven test cases from previous projects to convince myself that my new implementations were no worse than those I’d written before.


Automated testing was occasionally impractical: it’s difficult to automate the checking of BSP trees for correctness, since you’re as likely to make a mistake in the testing code as in the original source. I settled for the option of manually checking small cases
 and rigorously testing the parts of the editor which use BSP trees in order to try and find problems with larger cases
.
§ 4.2 Difficulties encountered with automated testing (e.g. checking that the BSP trees generated are correct), solution of manually checking small cases and rigorous user-testing for larger ones (< 100 words)
§ 4.3 Testers(?) (< 100 words)
§ 5 Conclusions

§ 5.1 Appraisal
I consider the project to have been a success. Almost all of the features outlined in my proposal have been implemented successfully and I have managed to keep a relatively
 large code-base well-organised and under control. The keys to this were rigorous refactoring, good layout and commenting and the maintenance of a detailed “to do” list. I also made use of a structural analyser
 to pinpoint sections of code which could benefit from further attention.

I am particularly pleased with my landscape implementation, because I didn’t have a source of inspiration for it and had to devise a surface-fitting method
 (see ‎§ 3.6) on my own.

§ 5.2 Lessons To Be Learnt

On a project this size, some mistakes are bound to creep in. When I did encounter difficulties, it was usually due to ill-discipline. In particular, feature-creep was an issue: rather than always focusing on the task at hand, I had a tendency to think up an interesting new feature and work on that instead. This did ultimately improve the editor, but sometimes made keeping track of the project harder than it needed to be. It also risked introducing unnecessary bugs, because some of the features I came up with were small add-ons which I coded quickly without too much thought. I’ve tended to get away with it, partly due to refactoring when I went wrong, but it’s still bad practice.

Another “sin” was the lack of planning at the beginning of the project. I knew exactly what I intended to implement, even if I didn’t quite know how to do it back then, but I didn’t make any serious attempt at code design
 
.
§ 6 What went right? (200 words)
§ 6.1 General project management -> it’s very easy to let a large code-base (nearly 20 kloc, not that the actual number means much) get out of hand but, for the most part, I managed to avoid serious problems by rigorous refactoring, good layout and commenting, a detailed TODO list and attention to detail
§ 6.2 Implementation of proposed features -> although I added a lot of random features as I went along as well, almost all the features I proposed initially made it into the end-result and (on the whole) worked as intended
§ 6.3 Landscapes -> I didn’t have a source of inspiration for my landscapes, so I had to just try something and hope for the best, they’ve turned out well given the circumstances

§ 6.4 Other stuff(?)
§ 7 What went wrong and what lessons can be learnt? (400 words)
§ 7.1 Overambition and feature-creep -> not entirely bad, flexibility allowed some interesting ideas to emerge, didn’t get too sidetracked, many of the features made the end-result better, BUT made the project hard to keep track of, risked introducing unnecessary bugs, especially because some features were small add-ons implemented quickly and without enough thought -> in practice, I’ve tended to get away with it, but it’s bad practice

§ 7.2 Implementing trivial, fun things before important but boring things -> not inherently a sin, but again made keeping track of a growing project more difficult, sometimes necessitated refactoring further down the road, etc.
§ 7.3 Not enough planning up-front -> partly a result of not knowing exactly how to do things until I tried them, but also a certain amount of diving-in -> not really as bad as I’ve made it sound, I did give it some serious thought, even if my “formal” planning wasn’t as rigorous as it might have been
§ 7.4 Specific issues(?) -> things like the mess I created with “valid” brushes, etc.
§ 8 Conclusion (100 words)
Again, the key here is to say what needs to be said and get out without getting bogged down.
� Note that when there is a choice of plane, i.e. when two or three components of the normal share the same largest absolute value, it doesn’t matter which we pick, but it’s vital that we’re consistent.


� Clearly this decision is somewhat arbitrary. In practice, the reason for it is that we want to display normalised texture axes in the 3D view and it’s thus more efficient to store unit axes rather than renormalising them constantly.


� This is merely in order to be consistent with the way Quake does things, since it makes importing/exporting other file formats easier.


� The user is given details of the offending test case, namely the actual and expected results, the file and method it’s in and the line it’s on in the file. This required a bit of trickery, namely creating a new Throwable object in order to access a stack trace and determine the test case’s location.


� By outputting them to a file on disk and laboriously checking split planes, etc. (This is less fun than it sounds!)


� Whilst many would advocate formally proving that my implementation is correct at this point, I feel I’m as likely to get the proof wrong as the original (and indeed perhaps more so, since I’ve implemented a number of BSP generators in the past and have a rough idea what I’m doing, whereas I’m no great expert at writing watertight proofs). To the extent that I’ve been trying things out on the editor for the duration of the project, without any noticeable BSP bugs, I’m happy with my somewhat ad-hoc approach in this instance. (At any rate, my BSP and CSG implementations seem to be an improvement on those in Hammer, in that I can’t see anything wrong with mine but I can quite easily demonstrate bugs in their implementations.)


� I say “relatively” because whilst experienced programmers would have no trouble dealing with a 17kloc project, I’ve personally never implemented anything over 10kloc in the past and the project thus presented me with something of a challenge.


� The analyser I used was Structural Analysis for Java, a freely-available alphaWorks product.


� One might point out that it’s not technically surface-fitting, in the sense that I’m actually just fitting splines separately in two different directions, but the end-result is similar.


� In mitigation, it should be noted that the project started life as a toy application in Michaelmas Term 2004, around the time of the second Computer Graphics practical which inspired it. The lack of planning can to some extent be attributed to the fact that when I dived in initially, I wasn’t intending the editor to be my third-year project. By the time it became that, I’d written a significant portion of it in any case and the “design” was fairly mature.


� In my opinion, code design isn’t necessarily something you should do up-front in any case, since until you know some of the details of what you’re writing, you’re as likely to come up with a bad design as not. In practice, I’ve always found that an iterative design method works better, whereby you constantly review the design over the course of the project and improve it as necessary.





_1189630527.unknown

_1189630857.unknown

_1189631741.unknown

_1189630855.unknown

_1189630392.unknown

