Stuart Golodetz

Monday 1pm-2pm

Marker: Ross Duncan

The Logic of Multi-Agent Information Flow

Homework 5
1.

We recall the definitions for P![B]:

S(P![B]) := S U {s(P![B]) : s in P[S]}

s(P![B]) -a> t iff s -a> t for a in A \ B, where A is the complete set of agents in S

s(P![B]) -b> t(P![B]) iff s -b> t for b in B

Premise:

S is epistemic, i.e. S is transitive and Euclidean

Or in other words:

* For any agent a and states s, t and u in S, if s -a> t and t -a> u then s -a> u (transitivity).

* For any agent a and states s, t and u in S, if s -a> t and s -a> u then t -a> u (Euclideanness).

RTP:

S(P![B]) is epistemic (where here we're talking about the model, of course, I can't do a bold S in Notepad!)

Proof:

Transitivity

Take any agent a and any states s, t and u in S(P![B]) s.t. s -a> t and t -a> u. We consider the various cases:

* s, t and u were all states in S, i.e. they're not new states in S(P![B]). Then since we've kept all the old

 transitions, and S was transitive, clearly s -a> u.

* s is an old state, but t is a new state. This can't happen, since there are no transitions from old states to

 new states.

* s and t are both old states but u is a new state. This also can't happen.

The only remaining possibilities are those where s is a new state:

* Suppose s is new and t and u are both old. Then s = s'(P![B]) for some old s' s.t. s' -a> t. But if s' -a> t

 and t -a> u in S, then s' -a> u, since S was transitive. And if s' -a> u then s -a> u in S(P![B]).

* Suppose s is new, t is old and u is new. This can't happen because there can't be a transition from t (an old

 state) to u (a new state).

* Suppose s is new, t is new and u is old. Then s = s'(P![B]) and t = t'(P![B]) for some s' and t' s.t. s' -a> t'

 and t' -a> u. But since S was transitive, there was also s' -a> u in S. So there will be s -a> u in S(P![B]).

* Finally, suppose they're all new. Then s = s'(P![B]), t = t'(P![B]) and u = u'(P![B]) for some s', t' and u'

 s.t. s' -a> t' and t' -a> u'. Well since S was transitive, clearly there was s' -a> u' in S. So there must

 also be s'(P![B]) -a> u'(P![B]) in S(P![B]), i.e. s -a> u.

So S(P![B]) is transitive.

Euclideanness

Take any agent a and any states s, t and u in S(P![B]) s.t. s -a> t and s -a> u. We consider the various cases:

* s, t and u are old, i.e. they were all in S. Then since S was Euclidean t -a> u was in S and is hence in S(P![B]).

* s is old, but t or u is new (can't happen)

* s is new, t and u are old. If s -a> t and s -a> u are in S(P![B]), then s = s'(P![B]) for some old s' s.t.

 s' -a> t and s' -a> u. But then t -a> u was in S and is hence in S(P![B]).

* s is new, t is new, u is old. If s -a> t and s -a> u then s = s'(P![B]) and t = t'(P![B]) for some old s' and t'

 s.t. s' -a> t' and s' -a> u. Then t' -a> u. But if t' -a> u then t -a> u.

* s is new, t is old, u is new (the same as the one we've just done, by symmetry)

* s, t and u are all new. If s -a> t and s -a> u then s = s'(P![B]), t = t'(P![B]) and u = u'(P![B]) for some

 old s', t' and u' s.t. s' -a> t' and s' -a> u'. But then since S was Euclidean, t' -a> u'. And if t' -a> u',

 then t -a> u.

So S(P![B]) is Euclidean and hence (since it's also transitive) it's epistemic.

QED

2.

Premises:

r = r', i.e.

(for all state models S and all states s in S (in any models))

if s -r>S t then <there exists>t' ~ t . s -r'>S t'

if s -r'>S t' then <there exists>t ~ t' . s -r>S t

and

P is bisimulation-invariant, i.e.

(for all models S, S' and all states s in S, s' in S')

s in P[S] and s ~ s' implies s' in P[S']

RTP:

[r]P = [r']P

i.e. {s in S: if s -r>S t then t in P[S(r)]} = {s in S: if s -r'>S t then t in P[S(r')]}

Proof:

Since it's not immediately obvious where to start here, we go back to basics. To prove that two sets are equal, we have

to prove that each is a subset of the other, so:

(i) X = {s in S: if s -r>S t then t in P[S(r)]} is a subset of Y = {s in S: if s -r'>S t' then t' in P[S(r')]}

Take an arbitrary element of X, that is, some state s in S s.t. if s -r>S t then t is in P[S(r)].

We want to show that this implies s is in Y, i.e. that s is s.t. if s -r'>S t' then t' is in P[S(r')].

Consider any t' s.t. s -r'>S t' (if there wasn't one, the implication would be trivially true, of course).

Then since r = r', <there exists>t ~ t' . s -r>S t. Now s is in X, i.e. it's such that if s -r>S t then t

is in P[S(r)]. So t is in P[S(r)]. But P is bisimulation-invariant, so if t is in P[S(r)] and t ~ t' then

t' is in P[S(r')]. Well t is in P[S(r)] and t ~ t', so t' is in P[S(r')]. So s is in Y and X is a subset

of Y.

(ii) Y is a subset of X

This is going to be pretty much the same thing, only the other way round. I've shortened it a little because

it was overly verbose before to try and make it clearer.

Take an arbitrary element of Y, that is, some state s in S s.t. if s -r'>S t' then t' is in P[S(r')].

We want to show that this implies s is in X, i.e. that s is s.t. if s -r>S t then t is in P[S(r)].

Consider any t s.t. s -r>S t (if there wasn't one, the implication would be trivially true, of course).

Then since r = r', <there exists>t' ~ t . s -r'>S t'. Now s is in Y, so t' is in P[S(r')]. Furthermore,

since P is bisimulation-invariant, t is in P[S(r)]. So s is in X and Y is a subset of X.

So X and Y are equal and hence [r]P = [r']P.

3.

(a)

We recall once more the definitions for P![B]:

S(P![B]) := S U {s(P![B]) : s in P[S]}

s(P![B]) -a> t iff s -a> t for a in A \ B, where A is the complete set of agents in S

s(P![B]) -b> t(P![B]) iff s -b> t for b in B

We consider the definition of s -P![B]>S t:

s -P![B]>S t <=> s is in P[S] and t = s(P![B])

Premise:

P is a bisimulation-invariant proposition, i.e.

(for all models S, S' and all states s in S, s' in S')

s is in P[S] and s ~ s' implies s' is in P[S']

RTP:

(for all models S, S', T and all states s in S, s' in S', t in T)

if s ~ s' and s -P![B]>S t then <there exists>t' ~ t . s' -P![B]>S t'

Proof:

Again it's not immediately obvious how to proceed here, so we try something simple:

Take a state s in S s.t. s ~ s' for some s' in S' and s -P![B]>S t for some t in T.

If s -P![B]>S t then s is in P[S] by definition. Since s is in P[S] and s ~ s',

s' is in P[S'], as P is a bisimulation-invariant proposition.

Well, we know there's some state t' = s'(P![B]) in T, since .(P![B]) is defined over P[S'],

and we know by definition that s' -P![B]>S t'. All we need to show is that t' ~ t.

We'll show this directly by appealing to the definition of bisimilarity, which we recall here

for completeness:

s ~ t iff

i) For all atomic facts p in phi, s |= p iff t |= p

ii) For all actions a, if s -a> s', then there is some t' such that t -a> t' and s' ~ t'

iii) For all actions a, if t -a> t', then there is some s' such that s -a> s' and s' ~ t'

Let's take these conditions one at a time for t' and t:

i)

As noted in the lecture notes (p.27 of Week 5), in an updated model both old and new states satisfy

the same atomic sentences as the (corresponding) old states.

Thus t' satisfies the same atomic sentences as s' and t satisfies the same ones as s. But s ~ s',

so s and s' satisfy exactly the same atomic sentences. Hence t and t' do as well.

ii)

We want to prove:

For all actions a, if t -a> u then there is some u' such that t' -a> u' and u ~ u'.

Proof Attempt #1:

Suppose t -a> u. Consider the cases:

* u is an old state. Then it must have been the case that s -a> u in S. But s ~ s', so there was some

 u' in S' s.t. s' -a> u' and u ~ u'. But then t' -a> u', since for any v, t' -a> v if s' -a> v.

* u is a new state. Then there was some v in S s.t. u = v(P![B]) and s -a> v. Now since s ~ s', there

 was some v' in S' s.t. s' -a> v' and v ~ v'. Now there's clearly some u' = v'(P![B]). We need to

 show that since v ~ v', it must be the case that u ~ u'... Oh dear! This looks a lot like our original

 problem again! Now what?

Proof Attempt #2:

TODO: I could do with some help on this one, please! :)

iii)

Essentially the same as (ii), by symmetry.

(b)

We recall that r[P] = {s in S: if s -r>S t then t in P[S(r)]}.

Premises:

(for all models S, S' and all states s in S, s' in S')

s in P[S] and s ~ s' implies s' in P[S']

and

(for all models S, S', T and all states s in S, s' in S', t in T)

if s ~ s' and s -r>S t then <there exists>t' ~ t . s' -r>S t'

RTP:

(for all models S, S' and all states s in S, s' in S')

s in X = {s in S: if s -r>S t then t in P[S(r)]} and s ~ s' implies s' in Y = {s' in S': if s' -r>S' t' then t' in P[S'(r)]}

Proof:

Take any s in X, i.e. any s s.t. if s -r>S t then t in P[S(r)]. Let s' in S' be such that s ~ s'. We need to show that s' is

in Y, i.e. that if s' -r>S' t' then t' is in P[S'(r)].

Take any t' s.t. s' -r>S' t'. Since r preserves bisimilarity, we have that if s' ~ s and s' -r>S t' then

<there exists>t ~ t' . s -r>S t (note that this is the same as the definition above modulo a trivial renaming).

So there is some t such that s -r>S t. Now since s is in X, t is in P[S(r)]. Since P is bisimulation-invariant,

t in P[S(r)] and t ~ t' gives us that t' is in P[S'(r)].

So for all possible t', t' is in P[S'(r)], i.e. s' is in Y and we're done.

(c)

If Q is bisimulation-invariant and r preserves bisimilarity then [r]Q is bisimulation-invariant.
{from part (b)}

We're given that Q is bisimulation-invariant.

If P is bisimulation-invariant (given) then P![B] preserves bisimilarity. So substituting r/P![B] gives us:

[P![B]]Q is bisimulation-invariant

QED

4.

Let di = "Child i is dirty" and Pi = ¬[i]di ^ ¬[i]¬di, for i in {1,2,3,4}, and P = ^{i=1 to 4} Pi.

i.e. P says that none of the children know whether they're dirty or not.

Then:

d1 ^ d2 ^ d3 ^ ¬d4 ^

// initially 1, 2 and 3 are dirty and 4 is clean

[(v{i=1 to 4} di)!](

// after an initial public announcement that one of them is dirty...

P ^ [P!](

// none of them yet know if they're dirty or not, and after they say this...

[(K1 d2 ^ K2 d1)!{1,2}](
// and after 1 and 2 share the information that they're both dirty...

[(K1 d1 ^ K2 d2 ^ P3 ^ P4)!](
// and after they announce that they know and 3 and 4 that they still don't...

[3]¬d3))))

// 3 believes she's clean

5.

(a)

Intuition would suggest that if A != B then it's true. If you tell P to person A and Q to person B then in the absence

of anyone talking to anyone else in the meantime, it doesn't matter which order you tell them in.

Intuition would also suggest that if A = B then it's false, therefore the equivalence doesn't hold in general.

Consider the Muddy Children puzzle. Suppose P = K2 v{i=1 to 4} di and Q = ¬[2]d2 and ¬[2]¬d2. In other words,

P says at least one of the children is dirty and 2 knows this and Q says 2 doesn't know if he is dirty or not.

Then after P![1]; Q![1], 1 knows that at least one of the children is dirty (and that 2 knows it also) and that

even given this 2 doesn't know whether he's dirty or not. After Q![1]; P![1], on the other hand, he knows that

2 doesn't know if he's dirty or not and then he finds out that 2 knows that at least one of the children is

dirty. What he doesn't know this time is that 2 knew that when he said he didn't know whether he was dirty

or not.

TODO: I'm not at all sure this is right and I’ve run out of time to have another go at it, sorry!
(b)

Definitions:

P!;Q! = (<P!>Q)! iff

(for all state models S and all states s in S (in any models))

if s -P!;Q!>S t then <there exists>t' ~ t . s -(<P!>Q)!>S t'

if s -(<P!>Q)!>S t' then <there exists>t ~ t' . s -P!;Q!>S t

We consider a definition of s -P!;Q!>S t:

s -P!;Q!>S t <=> s is in P[S] and there exists w = s(P!) s.t. w is in Q[S(P!)] and t = w(Q!)

We also consider one for s -(<P!>Q)!>S t':

s -(<P!>Q)!>S t' <=> s is in P[S] and t' = s((<P!>Q)!)

Proof:

=>)

Take any state s in S and any state t in S s.t. s -P!;Q!>S t. We want to show

that there is some state t' in S s.t. t' ~ t and s -(<P!>Q)!>S t'.

We refer to the definition of s -P!;Q!>S t, which tells us that w = s(P!) is in Q[S(P!)].

So there is a way of doing update P! s.t. Q is true at a state s gets mapped to afterwards.

So s |= <P!>Q. Thus we could announce <P!>Q at s, i.e. do the update (<P!>Q)!. We need to

show that after this update there is a state t' mapped to by s s.t. t' ~ t. Well there

clearly is a t' mapped to by s, but why must it be bisimilar to t?

TODO

<=)

Take any state s in S and any state t' in S s.t. s -(<P!>Q!)>S t'. We want to show

that there is some state t in S s.t. t ~ t' and s -P!;Q!>S t.

TODO
