Stuart Golodetz

FAO: Dr. Geraint Jones

Splines and Computational Geometry

Tutorial 2
1. Given a convex polygon P, a necessary and sufficient condition for a point a to be inside P is

inside(P,a) = <for all>i LeftOn(p[i],p[i+1],a)

where the predicate LeftOn(a,b,c) is true when the point c is to the left of, or on the line

determined by the points a and b.

Does the above equivalence hold when P is non-convex? Does either of its two implications

hold when P is non-convex? Prove your answer (by looking at each implication).

Answer:

No, the equivalence doesn't hold when P is non-convex. Consider the attached counter-example,

which also disproves

inside(P,a) => <for all>i LeftOn(p[i],p[i+1],a)

since in our diagram, a is inside the polygon but to the right of the line through 1 and 2.

But what about the other direction? Is it true that

<for all>i LeftOn(p[i],p[i+1],a) => inside(P,a)

?

In a word, yes. The proof is as follows:

The LHS of the above defines a convex region R, namely the region resulting from clipping

away the half-spaces on the right-hand sides of the various edges. Suppose that there exists

a point in R that is not inside the polygon. Then clearly no point in R can be inside the

polygon, for there are no edges of the polygon either crossing R, or even lying on lines

which cross R. Since the polygon was (presumably) a valid one and thus occupies space in

the plane, there must be somewhere on the plane which is inside the polygon. Furthermore,

this must be outside R and hence entirely on the right-hand side of one of its own edges.

But this doesn't make any sense, because our anti-clockwise winding guarantees that at

least part of the polygon must be on the left-hand side of each one of its edges! Thus we

have a contradiction, leading us to deduce that there is no point in R that is not inside

the polygon, or in other words that the implication holds.

(Disclaimer: I'm aware that the above proof may be a little woolly, I'd be interested in

seeing a better one!)

2. Quickhull is an algorithm which can be used in order to compute the convex hull of a given

set of points in the plane. A description of the algorithm is enclosed on the reverse of this

sheet. It relies on finding a point that is furthest from a line segment ab. Show how this

detail of the computation might be implemented.

Answer:

The obvious way to do it seems to be to compute the areas of the parallelograms which have

(a,c,b) as vertices for all c in S. The thinking behind this being that we already have

our A(a,c,b) function which calculates:

|xa ya 1|

|xc yc 1|

|xb yb 1|

Note that all the coordinates are integers, as is the determinant, so this will be accurate.

Having calculated the determinants, we simply take the c with the largest corresponding

determinant. This must be the furthest point from ab, for A(a,c,b) is double the area of

the triangle acb. Since the area of a triangle is half the base x the height, and the bases of

all the triangles will identical (just the length of ab), the greatest height (the

perpendicular distance of c from ab) will correspond to the greatest value of A(a,c,b).

3. Consider the problem of computing the convex hull of a simple polygon. Show, through a

counter-example, that one cannot use the second phase of Graham's algorithm directly. That

is to say, the first (sorting) phase is essential for the algorithm to produce the correct

results.

Answer:

Consider the attached diagram showing the counter-example, then follow the algorithm

through below.

{

Algorithm (for reference purposes):

as, bs := [onhull S], sort (S - onhull S);

while bs != [] do

[b] ++ bs' := bs;

if reflex b

then
if #as=1 then
bs := bs'

elif #as>1 then
as' ++ [a] := as;

as, bs := as', [a] ++ bs'

else as, bs := as ++ [b], bs'

done

}

as := [0], bs := [1,2,3,4]

bs != []

b := 1, bs' := [2,3,4]

!reflex 1

as := [0,1], bs := [2,3,4]

bs != []

b := 2, bs' := [3,4]

!reflex 2

as := [0,1,2], bs := [3,4]

bs != []

b := 3, bs' := [4]

reflex 3

#as>1

as := [0,1], bs := [2,4]

bs != []

b := 2, bs' := [4]

!reflex 2

as := [0,1,2], bs := [4]

bs != []

b := 4, bs' = []

!reflex 4

as := [0,1,2,4], bs := []

bs = []

done

But this is definitely wrong. For a start, the points aren't sorted in any sort of order,

but it's much worse than that: they're the wrong points! The vertex 1 shouldn't be in the

hull, since although it's not a reflex vertex in the original, it is if we consider what

it would be like with vertex 3 removed. By not having the points in the right order, we've

failed to account for the effect that removing 3 has on vertex 1.

4. Show how the incremental algorithm for computing the convex hull of a set of points can be

implemented without first sorting the input. [Hint: keep the current hull sorted with respect

to polar coordinates, taking one of the points on the current hull as the origin.]

Answer:

It's quite similar to before, except that instead of starting at a vertex which we know is

visible from the vertex we're adding, we're starting at the arbitrary origin of the hull when

we look for points of tangency. Furthermore, points can now be inside our existing hull (since

points aren't sorted in x-order any more), so we need to deal with that case as well. We

proceed roughly as follows:

p = ring(as[0], as[1], as[2]);

// ring makes an *anticlockwise* ring of points here

int i = 3;

// the next point we're adding has index 3

m = 3;

// the size of the hull is currently 3

while(i < n)

{

int pt[2];

// the points of tangency

int ptCount = 0;

for(int j=0; j<m; ++j)

{

if(LeftOn(as[i], p[hullPrev(j)], p[j]) ^ LeftOn(as[i], p[j], p[hullNext(j)]))
// note: ^ is XOR

{

// Ensure the points of tangency are the right way round.

if(!LeftOn(as[i], p[j], p[hullNext(j)]) pt[0] = j;

else pt[1] = j;

if(++ptCount == 2) break;

}

}

if(ptCount != 2)

// the only way this can happen is if our point was inside the hull

{

++i;

continue;

}

replace(pt[0], pt[1], i);
// replace the bit in between pt[0] and pt[1] with i (might change m)

// note that p is still an anticlockwise ring afterwards, i.e. the

// hull is still sorted with respect to polar coordinates

++i;

}
