Stuart Golodetz

FAO: Dr. Geraint Jones

Splines and Computational Geometry

Tutorial 1
1. A vertex is called reflex if its internal angle is strictly greater than PI.

(a) Prove that any polygon P has at most n - 3 reflex vertices.

Suppose, for a contradiction, that there exists a polygon P with n vertices, such that r of those vertices are reflex and n - 3 < r <= n. (In other words, suppose there is an n-gon with more than n - 3 reflex vertices).

Denote the internal angle at the i'th vertex of P as a[i] (0 <= i < n).

The sum of the internal angles of P is thus:

SUM{i=0 to n-1} a[i]

We know that:

(i)
i . a[i] > 0

(ii)
At least n - 2 of the a[i]'s are strictly greater than PI

So the sum has a value which is strictly greater than (n - 2)PI.

Now the internal angle sum of an n-gon is (n - 2)PI (see below), so clearly our supposition was wrong and no such P can exist.

QED

Why the internal angle sum of an n-gon is (n - 2)PI:

* Theorem: Any polygon can be triangulated (one proof, by giving an algorithm which produces such a triangulation, is in the lecture notes). Such a triangulation always produces n - 2 triangles.

* The internal angle sum of a triangle is PI.

* The internal angle sum of an n-gon is the sum of the internal angle sums of the triangles which make up any triangulation of it.

* Since there are n - 2 triangles, each with an internal angle sum of PI, the total is (n - 2)PI.

(b) Prove that for any n, there exists a polygon that has n - 3 reflex vertices.

Proof by explicit construction of such a polygon for any n:

Consider two edges of the polygon going from (0,0) to (1,0) and (0,0) to (0,1). Then consider joining the points (1,0) and (0,1) with a reflex chain containing (n - 2) edges. (Obviously there are two possible reflex chains here, we want the one which curves inwards towards the origin - the one which has a similar shape to y = 1/x, in other words.) We now have a complete polygon.

The reflex chain has n - 1 vertices on it. Two of the vertices (the ones at the ends) are not reflex ones, but the remaining n - 3 vertices are. So we have constructed a polygon with n - 3 reflex vertices for arbitrary n.

QED

For those for whom that isn't a formal enough proof, one can be a little more explicit about things:

Consider the circle centred at (1,1), radius 1. Then both (1,0) and (0,1) are on the circle's boundary. The arc joining them is a quarter of the circle's perimeter. To find the reflex vertices which we're going to connect with edges, we essentially construct an approximation to the arc. The polygon we get is as follows:

v[0] = (0,0)

i . 0 < i < n → angle = (PI/2)*(i-1/n-1) ^ v[i] = (1-sin(angle), 1-cos(angle))

So in particular, v[1] = (1-sin(0), 1-cos(0)) = (1,0).

And v[n-1] = (1-sin(PI/2), 1-cos(PI/2)) = (0,1).

(c) Construct, for any n, an n-gon whose triangulation is unique.

The n-gon constructed by the method just described in (b) is such an n-gon, since the only possible diagonals we can triangulate it with go from (0,0) to one of the reflex vertices, and we have to add all such diagonals.

2. Write abc as shorthand for Left(a,b,c) and _abc_ for Collinear(a,b,c). Which of the following facts are true if a, b, c and d are distinct:

(i) _abc_ ^ abd -> bcd

(ii) abc <-> cab

(iii) abc v bca

(iv) dbc ^ adc ^ abd -> abc

Prove the true implications and disprove the false ones.

Answer:

To prove these (without waffle!), we have to go back to the definitions of Left and Collinear:

Left:

abc := A(a,b,c) > 0

Collinear:

abc := A(a,b,c) = 0

or

abc := ¬abc ^ ¬acb = ¬(abc v acb)

(i)

Oddly enough, this is false. The Collinear predicate doesn't tell us anything about the ordering of a, b and c. If we have them in a line like:

a-----c-----b

then Collinear(a,b,c) is 0. This means that we can have the following scenario:

 d

a-----c-----b

Then certainly _abc_ ^ abd, but ¬bcd.

(ii) abc <-> cab

True

A(a,b,c) > 0

A(a,b,c) =
|xa
ya
1|
>
0

|xb
yb
1|

|xc
yc
1|

Well:

|xa
ya
1|
=
|xc
yc
1|
= A(c,a,b)

|xb
yb
1|

|xa
ya
1|

|xc
yc
1|

|xb
yb
1|

as we know from Linear Algebra II (among other places).

So A(a,b,c) > 0 <-> A(c,a,b) > 0.

Whence abc <-> cab.

QED

(iii)

False

abc v bca <-> abc

Suppose we have acb. This implies ¬abc, for:

A(a,c,b) > 0

A(a,b,c) = -A(a,c,b)
[by matrix algebra]

So A(a,b,c) < 0, hence ¬abc because abc := A(a,b,c) > 0.

If ¬abc, then ¬(abc v bca), since the two are equivalent.

It remains to show that acb can occur, if you're a purist, I suppose, but it's kind of obvious. Just take the edge ac and put b on the left of it, and there you are.

(iv)

True

Without resorting to Linear Algebra and showing it by various properties of determinants, it's nevertheless possible to see why this is true:

Rewrite the left-hand side as:

dbc ^ dca ^ dab

Then c is to the left of db, a is to the left of dc and b is to the left of da. At this stage, it's quite obvious that we're just going round d anticlockwise, in the order c, a, b, whence obviously the right-hand side, abc, must be true.

3. Consider the algorithm for triangulating monotone polygons discussed on page 47 of O'Rourke (enclosed). In an earlier edition of the book, it was stated that the search for diagonals can stop as soon as we reach the lowest vertex. Show that this is incorrect. Can we fix it by including lowest vertex in the loop? What is a correct guard for the loop?

Answer:

For the bit showing that it's incorrect, see the accompanying sheet (included, this time!)

A correct guard for the loop is:

while #ds < n - 3 do

where n is the number of vertices.

Proof (by induction):

Triangulating an n-gon needs n - 3 diagonals

Base Case (n = 3)

Triangulating a triangle obviously needs 0 = 3 - 3 diagonals

Hypothesis

Triangulating a k-gon needs k - 3 diagonals

Inductive Step

We can triangulate a (k+1)-gon by cutting off an ear with a diagonal and then triangulating the remaining k-gon (cutting off an ear removes two edges and adds one back, so the net effect is to reduce a (k+1)-gon to a k-gon). We add one diagonal to cut off an ear, and triangulating the k-gon needs k - 3 diagonals, so in total we need k - 2 diagonals = (k+1) - 3 diagonals.

QED

4. Write out the algorithm from Section 2.2 of O'Rourke (enclosed) for trapezoidalization in pseudo-code. What data structures are needed? How does the algorithm change when multiple points may have the same y-coordinate?

Answer:

y_order_func(v1,v2)

return v1.y < v2.y

// v contains the vertices, each of which contains x and y coordinates, and pointers to the

// two edges which share it, e1 and e2

// Each edge contains a miny and a maxy (the y coordinates of the two vertices it joins, in

// one order or the other)

// Sort them into y order

sort(v, y_order_func);
// takes O(n lg n) time

edgeList = EmptyTree;

trapezoidLines = [];

for i := 0 to #v - 1 do

(a,b) := edgeList.find_nearest_edges(v[i].x);
// takes O(lg n) time because edgeList is a balanced tree structure

if a != null and b != null then

trapezoidLines := trapezoidLines ++ [(a,b)]

end;

if v[i].e1.miny = v[i].y then
// e1 is below the sweep line

edgeList.add(e1);

// takes O(lg n) time

if v[i].e2.miny = v[i].y then
// e2 is below the sweep line

edgeList.add(e2);

// takes O(lg n time)

if v[i].e1.maxy = v[i].y then
// e1 is above the sweep line

edgeList.remove(e1);

// takes O(lg n time)

if v[i].e2.maxy = v[i].y then
// e2 is above the sweep line

edgeList.remove(e2);

// takes O(lg n time)

end;

Data structures needed:

v

An array of vertices

edgeList

A height-balanced tree structure

trapezoidLines

A list (singly-linked will do)

<vertex>

x, y, e1, e2 (as noted above)

<edge>

v1, v2, miny, maxy (or miny(), maxy())

When multiple points may have the same y-coordinate:

As noted in the sidenote on p.47 of O'Rourke, it suffices to sort points lexicographically, so we simply have to change our y_order_func:

y_order_func(v1,v2)

return v1.y < v2.y || (v1.y == v2.y && v1.x < v2.x)
