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Some Theory of Sets and Groups I

Problem Sheet 2
1)

a)

i)

f(x) = 3x3 + 2x2 - 8x + 1 = 3x(x2 + 2) + 2x2 - 14x + 1 = 3x.g(x) + 2x2 - 14x + 1

2x2 - 14x + 1 = 2(x2 + 2) - 14x - 3 = 2.g(x) - 14x - 3

f(x) = 3x.g(x) + 2.g(x) - 14x - 3

     = (3x+2).g(x) - 14x - 3

q(x) = 3x + 2

r(x) = -14x - 3

ii)

f(x) = x5 + 3x4 + x2 + x + 2 = (x3)(x2 + x + 1) + 2x4 - x3 + x2 + x + 2

2x4 - x3 + x2 + x + 2 = (2x2)(x2 + x + 1) - 3x3 - x2 + x + 2

-3x3 - x2 + x + 2 = (-3x)(x2 + x + 1) + 2x2 + 4x + 2

2x2 + 4x + 2 = 2(x2 + x + 1) + 2x

f(x) = (x3 + 2x2 - 3x + 2)(x2 + x + 1) + 2x

     = (x3 + 2x2 - 3x + 2).g(x) + 2x

q(x) = x3 + 2x2 - 3x + 2

r(x) = 2x

b)

f(x) = x3 + x2 - x - 1

     = q1(x).g(x) + r1(x)

     = q1(x).(x3 + 2x2 + 2x + 1) + r1(x)

     = 1.(x3 + 2x2 + 2x + 1) - x2 - 3x - 2

So q1(x) = 1, r1(x) = -x2 - 3x - 2

g(x) = x3 + 2x2 + 2x + 1

     = q2(x).r1(x) + r2(x)

     = q2(x).(-x2 - 3x - 2) + r2(x)

     = -x.(-x2 - 3x - 2) - x2 + 1

-x2 + 1 = 1.(-x2 - 3x - 2) + 3x + 3

g(x) = (-x + 1)(-x2 - 3x - 2) + 3x + 3

So q2(x) = -x + 1, r2(x) = 3x + 3

r1(x) = -x2 - 3x - 2

      = q3(x).r2(x) + r3(x)

      = q3(x).(3x + 3) + r3(x)

      = (-x/3).(3x + 3) - 2x - 2

-2x - 2 = (-2/3)(3x + 3)

r1(x) = (-x/3 - 2/3)(3x + 3) + 0

So q3(x) = -x/3 - 2/3, r3(x) = 0

So r2(x) = 3x + 3 is the highest common factor of f(x) and g(x), or, since we want a monic hcf, x + 1 is.

We have the following equations:

f(x) = x3 + x2 - x – 1 = 1.(x3 + 2x2 + 2x + 1) - x2 - 3x - 2

g(x) = x3 + 2x2 + 2x + 1 = (-x + 1)(-x2 - 3x - 2) + 3(x+1)

So:

3(x+1) = g(x) - (-x + 1)(-x2 - 3x - 2)

       = g(x) - (-x + 1)(f(x) - 1.g(x))

       = g(x) + (x-1)(f(x) - g(x))

       = g(x) + (x-1)f(x) - (x-1)g(x)

       = (x-1)f(x) + (2-x)g(x)

So h(x) = x+1 = a(x)f(x) + b(x)g(x), where a(x) = (x-1)/3 and b(x) = (2-x)/3.

Verification:

((x-1)(x3 + x2 - x - 1) + (2-x)(x3 + 2x2 + 2x + 1))/3

= (x4 + x3 - x2 - x - x3 - x2 + x + 1 + 2x3 + 4x2 + 4x + 2 - x4 - 2x3 - 2x2 - x)/3

= (3x+3)/3 = x+1 as required

2)

a)

If:

If m = hcf(m,n), by definition m|n. (If it's the highest common factor of two numbers, it's trivially a factor of each of them.)

Only if:

Suppose m|n. Clearly also m|m, so m is a common factor of m and n. So the highest common factor of m and n must be at least m. If the highest

common factor of m and n is not m, there exists some common factor h such that h > m, h|m and h|n. But there is no h such that h > m and h|m, so by contradiction m is the highest common factor of m and n.

b)

Suppose m/d and n/d are not relatively prime, i.e. they have a common factor greater than 1, call it c, s.t. for some integers x,y:

m/d = cx, n/d = cy

But then m = (cd)x, n = (cd)y, so cd|m and cd|n, i.e. cd is a common factor of m and n. And also, since c > 1, cd > d, i.e. d is not the highest

common factor of m and n as stated. This is a contradiction, so m/d and n/d must be relatively prime.

3)

m2 - n2 = (m+n)(m-n)

RTP: (m+n)(m-n) = 0 (mod 8) for all odd m,n

((m+n)(m-n)) MOD 8

= ((m+n) MOD 8)((m-n) MOD 8) MOD 8




{xy MOD p ( (x MOD p)(y MOD p) MOD p}

----------------------------

Modular subtraction aside

x = ap + b

y = cp + d

x MOD p = b

y MOD p = d

(x - y) MOD p

= ((a-c)p + b-d) MOD p

= (b-d) MOD p

= (x MOD p - y MOD p) MOD p

----------------------------

= ((m MOD 8 + n MOD 8) MOD 8)((m MOD 8 - n MOD 8) MOD 8) MOD 8

{(x-y) MOD p ( (x MOD p - y MOD p) MOD p}

Since m and n are both odd, their remainders MOD 8 will be odd, so it suffices to check that all pairs of odd integers less than 8 satisfy the

requirement that (m+n)(m-n) MOD 8 = 0. Actually, we can cut down on the effort a little, by observing that we can just check |m-n|, since the

minus sign won't make a difference.

m
n
m+n
|m-n|
(m+n)(|m-n|)
(m+n)(|m-n|) MOD 8

1
1
2
0
0

0

1
3
4
2
8

0

1
5
6
4
24

0

1
7
8
6
48

0

3
3
6
0
0

0

3
5
8
2
16

0

3
7
10
4
40

0

5
5
10
0
0

0

5
7
12
2
24

0

7
7
14
0
0

0

So m2 - n2 is divisible by 8.

4)

a)

Permutations compose left-to-right (as opposed to function composition, which is right-to-left), so:

i)

τμ =

(1 2 3 4 5)

(1 5 2 4 3)

ii)

τσ =

(1 2 3 4 5)

(4 1 5 2 3)

iii)

μ-1 =

(1 2 3 4 5)

(3 5 2 1 4)

iv)

σ-1 =

(1 2 3 4 5)

(4 1 2 3 5)

μτ =

(1 2 3 4 5)

(1 5 3 2 4)

μτσ-1 =

(1 2 3 4 5)

(4 5 2 1 3)

v)

μ-1τ =

(1 2 3 4 5)

(5 2 4 3 1)

μ-1τμ =

(1 2 3 4 5)

(2 3 5 1 4)

b)

i)

(1,3,9,7,6)(2,8,4,5)

ii)

(1,12)(2,6,8)(3,5,4,7,11,10,9)

iii)

(1 2 3 4 5 6 7 8)

-> (3 2 1 4 5 6 7 8)
{(13)}

-> (3 7 1 2 5 6 4 8)
{(247)}

-> (3 7 5 2 8 6 4 1)
{(385)}

So the permutation is:

(1 2 3 4 5 6 7 8)

(3 7 5 2 8 6 4 1)

As a product of disjoint cycles:

(1,3,5,8)(2,7,4)


{note: (6) wouldn't necessarily be written, as it is fixed, and it wasn't in the question anyway}

iv)

(1 2 3 4 5 6 7)

-> (5 3 1 2 4 6 7)
{(13245)}

-> (5 3 1 2 4 7 6)
{(67)}

-> (6 5 1 2 3 7 4)
{(1257)}

-> (1 5 7 2 3 6 4)
{(163)}

So the permutation is:

(1 2 3 4 5 6 7)

(1 5 7 2 3 6 4)

As a product of disjoint cycles:

(1)(2,5,3,7,4)(6)

5)

a)

μτ(k)

= τ(μ(k))
{composition of permutations}

= τ(k)

{μ fixes k, i.e. μ(k) = k}

= k

{τ fixes k, i.e. τ(k) = k}

Thus μτ fixes k.

Let I be the identity permutation. Then:

k

= I(k)

{the identity permutation fixes k by definition}

= μμ-1(k)
{composition of a permutation with its inverse gives the identity permutation}

= μ-1(μ(k))
{composition of permutations}

= μ-1(k)
{μ fixes k, i.e. μ(k) = k}

So μ-1 fixes k.

b)

4! = 24

Consider:

1 -> 1

2 -> one of 2,3,4,5 (4 choices)

3 -> an unchosen one from 2,3,4,5 (3 choices)

4 -> an unchosen one from 2,3,4,5 (2 choices)

5 -> the remaining one

4*3*2*1 = 4!

c)

Let I be the identity permutation. Then:

σ-1(LHS): σ-1(σ2) = (σ-1σ)σ = Iσ = σ
σ-1(RHS): σ-1(σ) = I
So σ = I.

6)

When n >= 5, consider the following:

2 + 3 <= n, so we can find two disjoint cycles of lengths 2 and 3, respectively. Any cycle of length m represents a permutation of order m. So the

cycles have orders 2 and 3, respectively. Call the cycles σ and τ, as in the question. Then:

(στ)^n

= σ^n * τ^n



{since the cycles are disjoint, they commute}

= (σ2)^(n/2) * (τ3)^(n/3)

{if n is a multiple of both 2 and 3}

= I^(n/2) * I^(n/3)


{since σ is of order 2, and τ is of order 3, where I is the identity permutation}

= I

So clearly if n = 6, we can find such permutations. Here's one possibility:

σ = (1 2)

τ = (3 4 5)

Thinking a bit more about it, consider:

Since σ and τ are permutations, they can be written as products of disjoint cycles. Further, since 2 and 3 are prime, σ will

be written as one cycle of length 2, and τ will be written as one cycle of length 3. So στ will be written as two disjoint cycles,

one of length 2 and one of length 3. So it has order 6, since the lcm of 2 and 3 is 6. So the only n in 3 <= n <= 7 such that στ has

order n is 6.

7)

Not sure about the first bit.

For the second bit:

c(π) >= n - m

<=> m >= n - c(π)

But ind(π) is the least number of transpositions needed, i.e. the minimum value m could be, i.e.

ind(π) = n - c(π)
