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Some Theory of Sets and Groups I

Problem Sheet 1
1)

i)

Not reflexive - In general x2 /= 1

Symmetric - If xy = 1 then yx = 1

Not transitive - Suppose xy = 1 and yz = 1. Then x = z = 1/y, so xz = 1/(y2), which is 1 iff y = 1 or -1.

ii)

Reflexive - a = 1.a

Not symmetric - b = ka  a = (1/k)b, and in general 1/k is not an integer (only an integer when k = 1 or -1)

Transitive - If a  b and b  c, then b = ka, c = mb (for some k,m), and hence c = m(ka) = (mk)a, thus a  c

iii)

Not reflexive - In general m2 /= 0

Symmetric - If mn = 0 then nm = 0

Not transitive - Suppose mn = 0 and np = 0. Then if n /= 0, m = p = 0 and mp = 0. But if n = 0, then mp isn't necessarily 0.

iv)

Not reflexive - (0,0) is not in the relation

Symmetric - Suppose a  b. Then a = 1 and b = 1  b = 1 and a = 1. So b  a.

Transitive - Suppose a  b and b  c. Then a = 1 and b = 1, and b = 1 and c = 1. So a = 1 and c = 1, whence a  c.

v)

Not reflexive - No line is perpendicular to itself (so in fact it's anti-reflexive)

Symmetric - If x is perpendicular to y, then certainly y is perpendicular to x

Not transitive - Suppose x is perpendicular to y, and y is perpendicular to z. This doesn't imply that x is perpendicular to z. Consider the case

where x and z are the same. Then both are perpendicular to y, but they are parallel to each other.

2)

i)

Reflexive - m2 = m2
Symmetric - m2 = n2  n2 = m2
Transitive - m2 = n2 ^ n2 = p2  m2 = p2
ii)

Reflexive - (x,y) ~ (x,y) iff y = y  (x,y) ~ (x,y)

Symmetric - (x,y) ~ (x1,y1)  y = y1  y1 = y  (x1,y1) ~ (x,y)

Transitive - (x,y) ~ (x1,y1) ^ (x1,y1) ~ (x2,y2)  y = y1 ^ y1 = y2  y = y2  (x,y) ~ (x2,y2)

iii)

Reflexive - (x,y) ~ (x,y) iff x2 + y2 = x2 + y2  (x,y) ~ (x,y)

Symmetric - (x,y) ~ (x1,y1)  x2 + y2 = x12 + y12  x12 + y12 = x2 + y2  (x1,y1) ~ (x,y)

Transitive - (x,y) ~ (x1,y1) ^ (x1,y1) ~ (x2,y2)  x2 + y2 = x12 + y12 ^ x12 + y12 = x22 + y22  x2 + y2 = x22 + y22

      (x,y) ~ (x2,y2)

iv)

Reflexive - (x,y) ~ (x,y) iff |x| + |y| = |x| + |y|  (x,y) ~ (x,y)

Symmetric - (x,y) ~ (x1,y1)  |x| + |y| = |x1| + |y1|  |x1| + |y1| = |x| + |y|  (x1,y1) ~ (x,y)

Transitive - (x,y) ~ (x1,y1) ^ (x1,y1) ~ (x2,y2)  |x| + |y| = |x1| + |y1| ^ |x1| + |y1| = |x2| + |y2|  |x| + |y| = |x2| + |y2|


      (x,y) ~ (x2,y2)

3)

i)

[0] = {0}

[1] = {-1,1}

[2] = {-2,2}

...

ii)

...

[(0,-1)] = {(x,-1) : xR}

[(0,0)] = {(x,0) : xR}

[(0,1)] = {(x,1) : xR}

...

iii)

e.g.

[(0,0)] = {(x,y) : x,yR, x2 + y2 = 0}

Essentially we have equivalence classes [r] s.t. [r] = {(x,y) : x,yR, x2 + y2 = r}, i.e. the class [r] contains all the points (x,y) which

lie on a circle (centre the origin) of radius r.

iv)

The equivalence classes are square-diamond shapes (of every possible width >= 0), centre the origin. To see why, consider:

e.g.

[(3,4)] = {(x,y) : |x| + |y| = 7}

So (2,5), (1,6), (0,7), (-1,6), ...[(3,4)]

Taking all the real values in between, and continuing round, we end up with a square round the origin, rotated through pi/4, hence the original

description of it as a square-diamond shape.

4)

i)

Reflexive - (m,n) ~ (m,n) iff m + n = n + m  (m,n) ~ (m,n)

Symmetric - (m,n) ~ (s,t)  m + t = n + s  s + n = t + m  (s,t) ~ (m,n)

Transitive -

(m,n) ~ (s,t) ^ (s,t) ~ (u,v)  m + t = n + s ^ s + v = t + u

RTP: m + v = n + u

m = n + s - t

v = t + u - s

m + v = (n + s - t) + (t + u - s) = n + u (as required)

So (m,n) ~ (u,v)

Equivalence classes:

Consider:

[(m,n)] = {(s,t) : s-t = m-n}

e.g.

(1,0), (2,1), (3,2), ...[(4,3)]

So the equivalence classes are:

...

[-1] = {(s,t) : s-t = -1} = {(0,1),(1,2),etc.}

[0] = {(s,t) : s = t} = {(0,0),(1,1),etc.}

[1] = {(s,t) : s-t = 1} = {(1,0),(2,1),(3,2),etc.}

...

ii)

Reflexive - (m,n) ~ (m,n) iff mn = nm  (m,n) ~ (m,n)

Symmetric - (m,n) ~ (s,t)  mt = ns  sn = tm  (s,t) ~ (m,n)

Transitive -

(m,n) ~ (s,t) ^ (s,t) ~ (u,v)  mt = ns ^ sv = tu

RTP: mv = nu

m = ns/t

v = tu/s

mv = nstu/ts = nu

Equivalence classes:

Consider:

[(m,n)] = {(s,t) : s/t = m/n}

e.g.

(4,2),(6,3),...[(2,1)]

The equivalence classes are [q], for any rationals qQ.

5)

a)

We are given that all the subsets in P are non-empty, so we don't have to check that.

RTP: Every element in A is in one of the subsets in P, and the subsets in P are pairwise disjoint.

Since P1 is a partition of A, (aA ( a unique i s.t. aBi
Since P2 is a partition of A, (aA ( a unique j s.t. aCj
Consider (for some i,j) X = Bi ^ Cj. Then aX iff aBi ^ aCj. Since there is exactly one Bi such that aBi, and similarly

for Cj, there is exactly one X s.t. aX. Thus every element in A is in one of the subsets in P. Further, no element in one of the subsets is

in any of the other subsets, i.e. they are pairwise disjoint.

QED

b)

a ~ b  a ~1 b ^ a ~2 b

6)

a)

i)

Reflexive -

A ~ A iff A = P-1AP for some non-singular matrix P

Take P = I, which is non-singular. Then IAI = A, as required.

Symmetric -

A ~ B  B = P-1AP for some non-singular matrix P

Take Q = P-1, which is also non-singular, with Q-1 = P.

Then Q-1BQ = Q-1P-1APQ = PP-1APP-1 = IAI = A

So B ~ A

Transitive -

A ~ B ^ B ~ C  B = P-1AP, C = Q-1BQ

So C = Q-1P-1APQ = (PQ)-1A(PQ)

So A ~ C

ii)

Reflexive -

A ~ A iff A = PA for some non-singular matrix P

Take P = I, then A = IA = A

Symmetric -

A ~ B iff B = PA for some non-singular matrix P

Take Q = P-1, which is non-singular

Then QB = QPA = P-1PA = A

So B ~ A

Transitive -

A ~ B ^ B ~ C iff B = PA and C = QB for some non-singular matrices P and Q

Then C = QPA = (QP)A

And QP is non-singular, since (QP)-1 = P-1Q-1, and both P-1 and Q-1 exist because P and Q are non-singular

So A ~ C

iii)

Reflexive -

A ~ A iff A = PAQ for non-singular matrices P and Q

Take P = Q = I, then IAI = A

Symmetric -

A ~ B iff B = PAQ for non-singular matrices P and Q

Take R = P-1, S = Q-1, which are both non-singular

Then RBS = RPAQS = (RP)A(QS) = IAI = A

So B ~ A

Transitive -

A ~ B and B ~ C  B = PAQ ^ C = RBS for some non-singular matrices P, Q, R and S

Then C = R(PAQ)S = (RP)A(QS)

Well, RP and QS are definitely non-singular, so A ~ C

b)

i)

If:

If B can be obtained from A by a finite number of elementary row and column operations, R[1]...R[m], and C[1]...C[p], then from Linear Algebra I we know that:

B = (R[m]...R[1])A(C[1]...C[p])

So if we write P = R[m]...R[1], and Q = C[1]...C[p], we have B = PAQ and A ~ B as required. Note that P and Q are non-singular, since we can

invert any series of elementary row or column operations.

Only if:

If A ~ B, then B = PAQ for non-singular matrices P and Q. From Linear Algebra I, we know that any invertible matrix can be inverted by the method which involves reducing it to the identity matrix whilst simultaneously doing the same thing to an identity matrix of the appropriate size. This is done by a sequence of elementary row and column operations. If we apply the reverse sequence of elementary operations, we therefore get from the identity matrix back to the original matrix we had, i.e. both P and Q can be written as a finite sequence of elementary operations. Thus B can be obtained from A by a finite number of elementary row and column operations.

ii)

RTP: A ~ B  A and B have the same rank

We know from Linear Algebra I that multiplying by an elementary matrix doesn't change the rank. So multiplying by a sequence of them doesn't

change the rank. So whatever rank A was, rank B will be the same.
