DPhil Research Proposal
The Topic
I would like to focus on graphics and modelling for a DPhil. I realise that covers quite a lot of ground; as yet I haven’t managed to pin down a more specific subject area. One idea I was considering was to do research into collision detection, a topic I became interested in as a result of trying to write 3D games at school (needless to say, a game without decent collision detection is barely worthy of the name). I’m not yet sure whether that’s the best topic to choose; when I talked to Stephen Cameron about it he mentioned a number of other ideas which also sounded interesting, so I’m still giving it some thought.
Why I think the topic is important
Without pinning down the exact topic, it’s somewhat hard to say why I think it’s important, but were I to assume, for the sake of argument, that it was collision detection, then I would say that it’s important for two very good reasons:

(1)
It’s ubiquitous. Almost every 3D game has to have collision detection (and 
collision response also, for that matter) and it has to look realistic even if it’s 
an illusion. It’s not just important for games, of course, though that’s the area 
with which I have most experience. It’s also important for modelling in 
general.
(2)
It’s entirely non-trivial. There’s no one perfect way of doing collision 
detection which is universally applicable, it depends on what you’re trying to 
do. Often there’s an inherent trade-off between the accuracy of the model and 
the speed with which it runs (this is particularly true when writing real-time 
games and is why creating the illusion of correctness tends to matter more in 
that domain).

Relevant Experience
When I was at school I tried implementing a collision detection and response scheme based on ellipsoids (as one does). Whilst I considered it quite successful at the time, in that I managed to get things bouncing off a 3D level (which had been compiled into a BSP tree) in a vaguely realistic manner, I remember it being overly complicated, hard to debug and unsatisfactory for a number of reasons, including the fact that it wasn’t very general – players shouldn’t really bounce up stairs, for instance. It would be interesting to do some collision detection research to see if there’s a better way of doing things. I’ve included a (rather psychedelic) screenshot of the engine below to give a clearer idea of what it was like.
[image: image1.png]



Figure 1: A screenshot from my Neptune engine, showing a box in the process of bouncing up a set of stairs (the model in the foreground is from id Software’s

Quake 2 and isn’t actually relevant to the subject at hand)
From a general experience perspective, my computing background before I came to Oxford was very much games-oriented, meaning that I’ve done quite a bit of coding with things like OpenGL and DirectX and that I’ve written quite a lot of BSP code over the years!
Since I’ve come to Oxford, I’ve done courses in Computer Graphics and Splines and Computational Geometry and implemented a map editor (for 3D worlds, like the one in the above screenshot) as my third-year project. A screenshot from it is shown below.
Although my computing interests are by no means confined to graphics (I also have an interest in compilers, in particular), I have always been particularly interested in graphics and indeed it’s one of the main reasons I got into Computer Science in the first place. I would relish an opportunity to do a DPhil in the graphics/modelling field.
[image: image2.png]4 Gxstudos -MapE




Figure 2: A (sneak preview!) screenshot of my third-year project
[image: image3.png]FPS: 60

Polygons Rendered: 237

Thunderbolt 3D Engine V.0.0.0.7




Figure 3: A bonus screenshot of the first BSP-based engine I wrote, primarily included to demonstrate that I’m genuinely interested in graphics (I didn’t get bored after one engine, but worked on several) and that I have a vague clue what’s involved – for what it’s worth, the engine in question also had fairly convincing collision detection, though it was very much hacked together rather than crafted (this is the sort of thing which research into collision detection could help avoid!)
