Programming Languages

Tutorial 4
Exercise 1

(a) Rewrite the C function swap in Fungol2, so that it works as follows:

>>> val x = 3;;

--- x = 3

>>> val y = 4;;

--- y = 4

>>> swap(&x, &y);;

--> 3

>>> list(x, y);;

--> [4, 3]

(If you implement things exactly the same as me, then swap(&x, &y) will

return the initial value of x.)

(b) Rewrite your answer to part (a) and the example script so as to use

parameters passed by reference instead.

(c) Rewrite your answer and the example script in the language FunMem,

which has locations as expressible values and explicit dereferencing.

Be ready to explain the differences in the way addressing operators like &, *

and ! are used in the three languages.

Answer:

(a)

rec swap(a,b) =

 let val t = *a in

 *a := *b;

 *b := t;;

(b)

rec swap(a,b) =

 let val t = a in

 a := b;

 b := t;;

>>> val x = 3;;

--- x = 3

>>> val y = 4;;

--- y = 4

>>> swap(x, y);;

--> 3

>>> list(x, y);;

--> [4,3]

(c)

val swap(a,b) =

 let val t = !a in

 a := !b;

 b := t;;

>>> val x = new();;

--- x = <address 0>

>>> x := 3;;

--> 3

>>> val y = new();;

--- y = <address 1>

>>> y := 4;;

--> 4

>>> swap(x,y);;

--> 3

>>> list(!x,!y);;

--> [4, 3]

Exercise 2

Write clauses that define eval e env when e = Address (Variable x), where

x is an assignable variable, or e = Contents e1, where e1 is any expression

that yields an address.

Answer:

eval (Address (Variable x)) env =

 case find env x of

 Const v -> error "Constant does not have an address"

 Ref a -> result (Addr a)

eval (Contents e1) env =

 eval e1 env @> (\m ->

 case m of

 Addr a -> get a

 _ -> error "Only addresses have contents")

Exercise 3

Define the function lvalue by writing clauses that define lvalue e env when

e has one of the forms Variable x or Contents e1. Hint: consider equation (*),

together with the clauses in the Fungol interpreter and in your answer to

Exercise 2 that define eval e env for the same expressions e.

Answer:

lvalue :: Expr -> Env -> M Location

lvalue (Variable x) env =

 case find env x of

 Ref a -> result a

 _ -> error "Left operand must be an l-value"

lvalue (Contents e1) env =

 eval e1 env @> (\m ->

 case m of

 Addr a -> result a

 _ -> error "Only addresses have contents")

lvalue _ env = error "Left operand must be an l-value"

Exercise 4

Write a clause that defines eval (Address e1) env, generalizing the definition

you made in Exercise 2 to allow e1 to be an arbitrary expression that has

an l-value.

Answer:

eval (Address e1) env = lvalue e1 env @> (\a -> result (Addr a))

Exercise 5

(a) Show that if x is an assignable variable, then the expression *(&x)

yields the same value as the expression x.

(b) Is it necessarily true that &(*x) yields the same value as x? Justify your

answer.

Answer:

(a)

RTP: eval (Contents (Address (Variable "x"))) env = eval (Variable "x") env

LHS

=

eval (Contents (Address (Variable "x"))) env

= {defn. of eval}

eval (Address (Variable "x")) env @> (\m ->

 case m of

 Addr a -> get a

 _ -> ...)

= {defn. of eval}

lvalue (Variable "x") env @> (\a -> result (Addr a)) @> (\m ->

 case m of

 Addr a -> get a

 _ -> ...)

= {defn. of lvalue}

result a' @> (\a -> result (Addr a)) @> (\m ->

 case m of

 Addr a -> get a

 _ -> ...)

 [where Ref a' = find env "x"]

= {defn. of @>}

result (Addr a') @> (\m ->

 case m of

 Addr a -> get a

 _ -> ...)

 [where Ref a' = find env "x"]

= {defn. of @>}

case Addr a' of

 Addr a -> get a

 _ -> ...

[where Ref a' = find env "x"]

= {simplification}

get a'

[where Ref a' = find env "x"]

RHS

=

eval (Variable "x") env

= {defn. of eval}

case find env "x" of

 Const v -> ...

 Ref a -> get a

 _ -> ...

= get a

[where Ref a = find env "x"]

= LHS

(b)

No, it's not necessarily true. If x doesn't denote an address, then it's

an error to try and dereference it with *x, whence:

x == x

&(*x) == BOOM != x

For example:

>>> val x = 3;;

--- x = <ref 0>

>>> &*x;;

Error: Only addresses have contents

Strangely, &(*x) causes the interpreter to hang. As, I might add, does (*x), though

*x works fine. Something very odd indeed seems to be going on within the parser.

Exercise 6

(a) Implement for Fungol the primitive new() that we had in FunMem,

and compare it with the function malloc in C or the procedure NEW

in Oberon. What does this say about the nature of variables in our

language FunMem?

(b) What is the difference between the following programs in Fungol?

let val x = new() in x := 3; x;;

let val x = new() in *x := 3; x;;

(c) What is wrong with this C program?

int *allocate()

{

int space;

return &space;

}

int main()

{

int *p = allocate();

*p = 3; printf("%d\n", *p);

return 0;

}

Answer:

(a)

prim "new" [] = new @> (\a -> result (Addr a))

Comparison with malloc:

malloc(size) returns a pointer to a freshly-allocated memory block of at least

size bytes, whereas new() in Fungol just returns (what is essentially) a pointer

to a single storage location. Nothing is said about the size of the storage

location, and there's no way of allocating memory blocks of a certain size.

This tells us that things which can be stored in variables in Fungol all have

the same "size", which makes sense because they're just elements of the data

type Value, e.g. IntVal i, Cons h t, etc.

Comparison with NEW:

As far as I remember, NEW allocates memory for variables which have already had

their type specified, e.g.

VAR p: POINTER TO INTEGER;

NEW(p);

In Fungol, however, types aren't mentioned at all. This tells us that Fungol

isn't strongly-typed. We can use the same storage location to store either a

pointer or an integer, for instance.

Furthermore, NEW(p) has a variable associated with it, whereas new() in Fungol

doesn't, it just returns a storage location.

(b)

The first creates a variable x which contains an address as its value,

then overwrites the address with 3 and finally evaluates to what's now

stored in x, namely 3.

The second creates a variable x which contains an address as its value,

stores 3 at the address pointed to by x, and then evaluates to what's

now stored in x, namely the address of the location at which we've

stored 3.

The first program wouldn't be type-correct in a strongly-typed language

because x initially contains a pointer, which is then replaced by an

integer. The second program would be type-correct in such a language,

for instance it's equivalent to the C program:

int *x = malloc(sizeof(int));

*x = 3;

x;

(c)

There are two things wrong with it. The more important of the two is

that allocate is returning the address of a local variable which goes

out of scope when the function returns. The other point to note is

that if you want to use printf, you need to include stdio.h:

#include <stdio.h>

Of course, the latter is a practical point about C and thus barely

worth noting from a theoretical point of view.
