Programming Languages

Tutorial 3
Exceptions

Exercise 1

Show that the monad of failure satisfies the three monad laws.

Answer:

For reference purposes, the three laws are:

(xm @> f) @> g = xm @> (\x -> f x @> g)

(result x) @> f = f x

xm @> result = xm

The relevant bits of the monad of failure are:

data M a = Ok a | Fail

result :: a -> M a

result x = Ok x

(@>) :: M a -> (a -> M b) -> M b

(Ok x) @> f = f x

Fail @> f = Fail

Law 1 : (xm @> f) @> g = xm @> (\x -> f x @> g)

i) xm = Ok x for some x

Then:

LHS

= (xm @> f) @> g

= ((Ok x) @> f) @> g

[case analysis]

= (f x @> g)

[defn. of @>]

RHS

= xm @> (\x -> f x @> g)

= (Ok x) @> (\x -> f x @> g)
[case analysis]

= (\x -> f x @> g) x

[defn. of @>

= f x @> g

[getting rid of the lambda]

ii) xm = Fail

Then:

LHS

= (xm @> f) @> g

= (Fail @> f) @> g

[case analysis]

= Fail @> g

[defn. of @>]

= Fail

[defn. of @>]

RHS

= xm @> (\x -> f x @> g)

= Fail @> (\x -> f x @> g)
[case analysis]

= Fail

[defn. of @>]

Law 2 : (result x) @> f = f x

LHS

= (result x) @> f

= (Ok x) @> f

[defn. of result]

= f x

[defn. of @>]

= RHS

Law 3 : xm @> result = xm

i) xm = Ok x for some x

Then:

LHS

= xm @> result

= (Ok x) @> result

[case analysis]

= result x

[defn. of @>]

= Ok x

[defn. of result]

= xm

[case analysis]

= RHS

ii) xm = Fail

Then:

LHS

= xm @> result

= Fail @> result

[case analysis]

= Fail

[defn. of @>]

= xm

[case analysis]

= RHS

Exercise 2

Show that the operation orelse on the monad of failure is associative with

unit element failure. Can these facts be expressed as relationships between

programs in the language FunFail?

Answer:

The relevant bits of the monad of failure are:

failure :: M a

failure = Fail

orelse :: M a -> M a -> M a

orelse (Ok x) ym = Ok x

orelse Fail ym = ym

To show it's associative, we must show that:

orelse (orelse xm ym) zm = orelse xm (orelse ym zm)

Proof:

i) xm = Ok x for some x

LHS

= orelse (orelse xm ym) zm

= orelse (orelse (Ok x) ym) zm
[case analysis]

= orelse (Ok x) zm

[defn. of orelse]

= Ok x

[defn. of orelse]

RHS

= orelse xm (orelse ym zm)

= orelse (Ok x) (orelse ym zm)
[case analysis]

= Ok x

[defn. of orelse]

ii) xm = Fail

LHS

= orelse (orelse xm ym) zm

= orelse (orelse Fail ym) zm

[case analysis]

= orelse ym zm

[defn. of orelse]

RHS

= orelse xm (orelse ym zm)

= orelse Fail (orelse ym zm)

[case analysis]

= orelse ym zm

[defn. of orelse]

QED

To show that it has failure as its unit, we must show that:

i) orelse xm Fail = xm

Well:

orelse (Ok x) Fail = Ok x

orelse Fail Fail = Fail

ii) orelse Fail ym = ym

This is by definition.

QED

TODO: Last part of question.

Exercise 3

The exceptions in FunFail are the simplest possible, in that an exception

does not have any value attached to it. In this exercise, we will implement a

slightly more elaborate exception mechanism. Exceptions are raised by calling

fail(x), where x is a value that is propagated to the handler. The orelse

construct is modified so that the second argument is a function; if the first

argument expression raises an exception, then the value attached to it is

passed to this function. For example:

>>> 1 orelse (lambda(x) x+1);;

--> 1

>>> (fail(3) + 8) orelse (lambda(x) x+1);;

--> 4

>>> fail(3) orelse (lambda(x) fail(x+1));;

failed(4)

In the first expression, the sub-expression 1 succeeds, so its value becomes

the value of the whole expression. In the second expression, the left-hand

operand of orelse fails, raising an exception with value 3; this value is used

in the exception handler to calculate the value that is returned. In the third

example, the exception handler raises another exception.

 An implementation of this language can be based on the monad type

M a = Ok a | Fail Value

(a) Show how to define result and @> so as to make M into a Monad.

(b) Define operations

failure :: Value -> M a

orelse :: M a -> (Value -> M a) -> M a

on the monad M, suitable for implementing fail and orelse.

(c) Give interpreter clauses for fail and orelse.

(d) Work out what result your interpreter gives for the expression

2 orelse fail(3)

(Here the right-hand operand of orelse fails, rather than yielding an

exception-handling function, unlike the expression 2 orelse (lambda(x)

fail(3)), where the exception handler is well-defined but fails when it

is invoked.) Would it be possible to give a different result for such

expressions by changing the interpreter?

Answer:

(a)

result :: a -> M a

result x = Ok x

(@>) :: M a -> (a -> M b) -> M b

(Ok x) @> f = f x

(Fail v) @> f = Fail v

(b)

failure :: Value -> M a

failure v = Fail v

orelse :: M a -> (Value -> M a) -> M a

orelse (Ok x) ym = Ok x

orelse (Fail v) ym = ym v

(c)

prim "fail" [v] = failure v

eval (OrElse e1 (Lambda [x] e2)) env =

 orelse (eval e1 env) (\v -> eval e2 (define env x v))

(d)

>>> 2 orelse fail(3);;

Error: can't evaluate OrElse (Number 2) (Apply (Variable "fail") [Number 3])

It would be possible to give a different result for such expressions, you

just have to write another OrElse clause, for example as follows:

eval (OrElse e1 (Apply f [_])) env =

 orelse (eval e1 env) (\v -> eval f env @> (\fv -> apply fv [v]))

This is actually rather dubious, because since it's an Apply rather than a

Lambda expression, it's not entirely clear what we should be doing for it.

But the fact remains that it's possible, even if it requires further thought.

The remainder of this set of exercises asks you to investigate the interaction

of two language features: assignable variables and exceptions. We will see

that there are two different ways to design a language with these two features,

and that each way gives a language where programs have a different meaning.

 Throughout these exercises, we will use the type Maybe a, defined in the

Haskell prelude by

data Maybe a = Just a | Nothing

Like the monad of failure, this type allows us to represent results that may

represent successful completion (Just x) or failure (Nothing).

Exercise 4

The type M1 a is defined by

type M1 a = Mem -> Maybe (a, Mem)

(a) Show how to make M1 into a monad by defining result and @> appropriately.

(b) Define the following language-specific operations on M1:

new :: M1 Location

get :: Location -> M1 Value

put :: Location -> Value -> M1 Value

fail :: M1 a

orelse :: M1 a -> M1 a -> M1 a

- in other words, all the operations that are supported by either the

monad of memory or the monad of failure.

Answer:

(a)

result :: a -> M a

result x mem = Just (x, mem)

(@>) :: M a -> (a -> M b) -> M b

(xm @> f) mem =

 case xm mem of

 Just (x, mem1) -> f x mem1

 Nothing -> Nothing

(b)

new :: M Location

new mem = Just (fresh mem)

get :: Location -> M Value

get a mem = Just (contents mem a, mem)

put :: Location -> Value -> M ()

put a v mem = Just ((), update mem a v)

failure :: M a

failure mem = Nothing

orelse :: M a -> M a -> M a

-- :: (Mem -> Maybe (a, Mem)) -> (Mem -> Maybe (a, Mem)) -> (Mem -> Maybe (a, Mem))

orelse xm ym mem =

 case xm mem of

 Just (x, mem1) -> Just (x, mem1)

 Nothing -> ym mem

Exercise 5

Repeat Exercise 4, but this time using the type M2 a defined by

type M2 a = Mem -> (Maybe a, Mem)

Answer:

result :: a -> M a

result x mem = (Just x, mem)

(@>) :: M a -> (a -> M b) -> M b

(xm @> f) mem =

 let (m, mem1) = xm mem in

 case m of

 Just x -> f x mem1

 Nothing -> (Nothing, mem1)

new :: M Location

new mem = let (a, mem') = fresh mem in (Just a, mem')

get :: Location -> M Value

get a mem = (Just (contents mem a), mem)

put :: Location -> Value -> M ()

put a v mem = (Just (), update mem a v)

failure :: M a

failure mem = (Nothing, mem)

orelse :: M a -> M a -> M a

orelse xm ym mem =

 case xm mem of

 (Just x, mem') -> (Just x, mem')

 (Nothing, mem') -> ym mem'

Note that because you can pass a memory state on this time, you can do all sorts of "Fun" things like:

>>> val x = new();;

--- x = <address 0>

>>> x := 1;;

--> 1

>>> (x := 2; fail()) orelse !x;;

--> 2

(rather than 1 at the end)

Whether this is a good thing or not is up for debate. It's inconsistent with the previous version, if nothing

else.

Exercise 6

Now consider two interpreters for a language that combines the features

of FunMem and FunFail. Both are obtained by pasting together all the interpreter

clauses (for pure Fun plus assignment, sequencing, while and orelse)

and primitives (those of pure Fun plus new, ! and fail) from the two interpreters

FunMonad and FunFail, but one is based on M1 and its attendant operations,

and the other is based on M2.

(a) Explain in words the difference between the types M1 a and M2 a.

(b) Explain what difference this makes in the languages implemented by

 the two interpreters. Which would be easier to implement efficiently?

(c) Write a program in the extended Fun language that gives a different

 result with the two interpreters.

Answer:

(a)

Essentially, the difference between the types is that in M1 a, we might or

might not get both a result and a memory, whereas in M2 a, we definitely

get a memory but we still might not get a result.

Failure in M1 means complete failure in the sense that if the evaluation of

an expression fails, the memory is unmodified afterwards. Failure in M2

could mean that, if we wanted it to, but we can also (as we are doing above)

keep any changes to the memory which resulted from evaluating the expression.

(b)

It’s more efficient to implement M2, because we only need one copy of
the memory. With M1, we need to keep old memories around in case

of failure.

(c)

As above:

>>> val x = new();;

--- x = <address 0>

>>> x := 1;;

--> 1

>>> (x := 2; fail()) orelse !x;;

The M1 version produces 1; the M2 version produces 2.
