Programming Languages

Tutorial 1

Question 1

> cprod :: [[a]] -> [[a]]

> cprod [] = [[]]

> cprod (xs:xss) = [x:ys | x <- xs, ys <- cprod xss]

cprod (xs:xss)

= [x:ys | x <- xs, ys <- cprod xss]

[defn.]

= concat (map (\x -> [x:ys | ys <- cprod xss]) xs)

[IFP p.112]

Well:

[x:ys | ys <- cprod xss]

= concat (map (\ys -> x:ys) (cprod xss))

So (continuing from the above):

= concat (map (\x -> (concat (map (\ys -> x:ys) (cprod xss)))) xs)

= <something rather complicated>

> cprod' :: [[a]] -> [[a]]

> cprod' = foldr f [[]]

>
where

>

f [] ys = []

>

f (x:xs) ys = map (x:) ys ++ f xs ys

TODO: A better version of this, not using map (preferably), and the derivation.

Question 2

> index' :: Eq a => a -> [a] -> Int

> index' x [] = -1

> index' x (y:ys)

>
| y == x
= 0

>
| rec == -1
= -1

>
| otherwise
= 1 + rec

>
where rec = index' x ys

> index'' :: Eq a => a -> [a] -> Int

> index'' x xs

>
| filteredList == []
= -1

>
| otherwise

= (snd . head) filteredList

>
where

>

indexedList = zip xs [0..(length xs - 1)]

>

filteredList = filter ((== x) . fst) indexedList

Question 3

HASKELL VERSION

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

FUN VERSION

rec foldl(f,z,xs) = if xs = nil then z else foldl(f,f(z,head(xs)),tail(xs))

HASKELL VERSION

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

FUN VERSION

rec foldr(f,z,xs) = if xs = nil then z else f(head(xs),foldr(f,z,tail(xs)))

Question 4

rec map(f) = lambda(xs) if xs = nil then nil else cons(f(head(xs)), map(f)(tail(xs)))

Question 5

Repeat exercise 1 in Fun. (Don't bother to repeat the derivation.)

Answer:

HASKELL VERSION

cprod' :: [[a]] -> [[a]]

cprod' = foldr f [[]]

where

f [] ys = []

f (x:xs) ys = map (x:) ys ++ f xs ys

FUN VERSION (with necessary library function implementations)

val section_cons(x) = lambda(xs) cons(x,xs)

rec init(xs) = if tail(xs) = nil then nil else cons(head(xs),init(tail(xs)))

rec last(xs) = if tail(xs) = nil then head(xs) else last(tail(xs))

rec append(xs,ys) =

if xs = nil then ys

else if ys = nil then xs

else append (init(xs), cons(last(xs),ys))

val cprod(xss) =

 let rec f(xs,ys) =

 if xs = nil then nil

 else append(map (section_cons(head(xs))) (ys), f(tail(xs),ys))

 in

 foldr(f,list(nil),xss)

Question 6

Repeat exercise 2 in Fun. (Omit the recursion-free version.)

Answer:

HASKELL VERSION

index' :: Eq a => a -> [a] -> Int

index' x [] = -1

index' x (y:ys)

| y == x
= 0

| rec == -1
= -1

| otherwise
= 1 + rec

where rec = index' x ys

FUN VERSION

rec index(x,ys) =

 let r = index(x,tail(ys)) in

 if ys = nil then -1

 else if head(ys) = x then 0

 else if r = -1 then -1

 else 1 + r

Question 7

Show the abstract syntax trees corresponding to the following Fun expressions:

3

x

x+3

(x+3)*4

let val x = 2 in x+3

let val f(x) = x+3 in f(2)

f(g(x))

f(g)(x)

Answer:

Number 3

Variable x

Apply (Variable "+") [Variable "x", Number 3]

Apply (Variable "*") [Apply (Variable "+") [Variable "x", Number 3], Number 4]

Let (Val "x" (Number 2)) (Apply (Variable "+") [Variable "x", Number 3])

Let (Val "f" (Lambda ["x"] (Apply (Variable "+") [Variable "x", Number 3])) (Apply (Variable "f") [Number 2])

Apply (Variable "f") [Apply (Variable "g") [Variable "x"]]

Apply (Apply (Variable "f") [Variable "g"]) [Variable "x"]

Question 8

Is the following program legal in Fun?

let val f(x) =

 (let val g(y) = x + y in g(2)) in f(3)

If so, explain how the reference to x from the body of g is implemented in our interpreter.

Answer:

Yes, it's legal.

Explanation:

The abstract syntax for the above is (as far as I can tell):

Let (Val "f" (Lambda ["x"] (Let (Val "g" (Lambda ["y"] (Apply (Variable "+") [Variable "x", Variable "y"]))) (Apply (Variable "g") [Number 2])))) (Apply (Variable "f") [Number 3])

So we evaluate this (using things like d1 and e1 as placeholders to keep things succinct):

eval (Let (Val "f" d1) e1) env

= eval e1 (elab (Val "f" d1) env)

= eval e1 (define env "f" (eval d1 env))

= eval e1 (define env "f" (eval (Lambda ["x"] e2) env))

= eval e1 (define env "f" (abstract ["x"] e2 env))

= eval e1 (define env "f" (Function f))

 where f args = eval e2 (define_args env ["x"] args)
<- so x is in the environment in which e2 is evaluated

Now e2, of course, is Let (Val "g" (Lambda ["y"] (Apply (Variable "+") [Variable "x", Variable "y"]))) (Apply (Variable "g") [Number 2]).

The point is that when we evaluate the expression let val g(y) = x + y in g(2), x is in the environment because define_args returned

an environment in which x is now defined in which to evaluate e2.

Question 9

Is the following program legal in Fun? Is so, what is its value?

let val f(x) =

 let val g(y) = x + y in

 let val h(x) = g(x + 3) in

 h(2 * x) in

f(7)

Answer:

Yes, and 24, respectively. Consider:

f(y) = h(2 * 7) = h(14) = g(14 + 3) = g(17) = 7 + 17 = 24

Question 10

Explain the following behaviour of the Fun interpreter.

>>> val x = 3;;

(* Set x to 3 *)

--- x = 3

>>> val f(y) = x + y;;

(* f depends on x *)

--- f = <function>

>>> f(2);;

--> 5

>>> val x = 4;;

(* Change x to 4 *)

--- x = 4

>>> f(2);;

(* f is the same as before *)

--> 5

Answer:

The environment in which f is evaluated is the environment which was in existence at the point at which we defined it. The fact that we've subsequently changed the environment is inconsequential as far as evaluating f is concerned.

Question 11

In our interpreter for Fun, what happens if a function is called with too many or too few parameters? What would happen if special steps were not taken to produce this behaviour? What happens if a function definition uses the same name for more than one formal parameter, as in the following program?

val f(x,y,x) = x + y

Is this behaviour sensible? Is it appropriate if we want to use our interpreter as the definition of Fun?

Answer:

What happens if we pass the wrong number of arguments depends on the function, actually. Consider the following output from the interpreter:

>>> val f(x) = 3;;

--- f = <function>

>>> f(1,2);;

--> 3

>>> f();;

--> 3

>>> val g(y) = y;;

--- g = <function>

>>> g(1);;

--> 1

>>> g(1,2);;

Error: wrong number of args

>>> g();;

Error: wrong number of args

This is rather strange.

What would happen if special steps weren't taken depends on whether there were too many arguments, or too few. If define_args is implemented in terms of zip (which seems highly probable), then having too many arguments will just result in the extra arguments being silently ignored (BAD). Having too few arguments would result in some of the formal parameters not being bound to values (also BAD). The latter is especially dodgy; consider the following:

val f(n,x,y) = if n = 1 then x else y

Then f(1,2) silently returns 2, but f(0,2) tells you that y is unbound: BLEURGH!

If multiple formal parameters have the same name, then we end up referring to the actual parameter that was bound last to that name. In other words, with the function given in the question, f(1,2,3) = 2+3 = 5, not 2+1 = 3. This behaviour isn't sensible; we should be signalling an error. It's not especially appropriate if we want to use our interpreter as the definition of Fun, either, because we probably don't want to define Fun to do dodgy things like that.

Question 12

A programming language construct is called syntactic sugar if it has the same meaning as another, possibly longer, construct, so that it can be implemented by replacing it syntactically by the longer construct, rather than by building it into the interpreter. By considering the action of both in the Fun interpreter, show that the construct,

let val x = e1 in e2,

can be regarded as syntactic sugar for

(lambda (x) e2)(e1).

Answer:

Evaluating the first binds e1 to x and then evaluates e2. In the abstract syntax:

eval (Let (Val "x" e1) e2) env

= eval e2 (elab (Val "x" e1) env)

= eval e2 (define env "x" (eval e1 env))

So the environment in which e2 is evaluated has x in it, such that x contains the result of evaluating e1.

Evaluating the second also binds e1 to x, only in this case x is a formal parameter rather than a variable name. In the abstract syntax:

eval (Apply (Lambda ["x"] e2) [e1]) env

= apply (eval (Lambda ["x"] e2) env) (map ev [e1])

 where ev e = eval e env

= apply (abstract ["x"] e2 env) [eval e1 env]

= apply (Function f) [eval e1 env]

 where f args = eval e2 (define_args env ["x"] args)

= f [eval e1 env]

= eval e2 (define_args env ["x"] [eval e1 env])

Note that define_args env [x] [v] = define env x v. So the results are identical.

Question 13

For simplicity, Fun allows only a single definition following let. Sometimes it is convenient to allow several definitions at once, and sometimes it is essential, where it is necessary to define recursively several functions that may call each other. Explain how to extend Fun and its interpreter with the following three variants of let:

* let val x1 = e1 and ... and xn = en in e, where the expressions ei are all evaluated in the initial environment, and e is evaluated in an environment where the xi's have been bound to the values of the corresponding ei's.

* let seq x1 = e1 and ... and xn = en in e, where each successive ei is evaluated in an environment where x1, ..., xi-1 have already been bound.

 Thus this form is syntactic sugar for

 let x1 = e1 in let x2 = e2 in ... let xn = en in e

* let rec x1 = e1 and ... and xn = en in e, where the ei's must all be lambda expressions, and each of them may contain calls to any of the xj's.

Answer:

(i)

The easiest way is to change the Defn type to:

data Defn =

 ...

| MultiVal [Ident] [Expr]
- val x1 = e1 and ... and xn = en

Then we simply have to modify the elab function:

elab :: Defn -> Env -> Env

...

elab (MultiVal xs es) env = multidefine xs (map (\e -> eval e env) es) env

Note that #xs and #es will be the same, because otherwise we'd have had a parser error. Also note that all the expressions are evaluated in the initial environment.

multidefine :: [Ident] -> [Value] -> Env -> Env

multidefine [] [] env = env

multidefine (x:xs) (v:vs) env = multidefine xs vs (define env x v)

(ii)

Again we change the Defn type:

data Defn =

 ...

| Seq [Ident] [Expr]

- seq x1 = e1 and ... and xn = en

And modify the elab function:

elab :: Defn -> Env -> Env

...

elab (Seq xs es) env = foldl (\env' (x,e) -> define env' x e) env (zip xs es)

(iii)

Once again we change the Defn type:

data Defn =

 ...

| MultiRec [Ident] [Expr]
- rec x1 = e1 and ... and xn = en

And modify the elab function:

elab :: Defn -> Env -> Env

...

elab (MultiRec xs es) env = env' where env' = multidefine xs (map (\(Lambda ys e) -> abstract ys e env') es) env

Note that the environment in which the function calls are made contain the bindings for all the other xi's (at least, as far as I can tell!).

Final Note:

In order to get all of these things to work, we'll obviously have to change the parser to recognise the new Let expressions.

Question 14
Our language Fun has functions with multiple arguments, but Haskell has only single-argument functions, with multiple arguments simulated by

currying. Discuss the changes that would be needed to make a version of Fun that had only functions with a single argument.

Answer:

A good start would be to change the Lambda and Apply expression types:

data Expr =

 ...

| Apply Expr Expr
- e0 (e1)

| Lambda Ident Expr
- lambda (x) e

| ...

We also need to change the Function value type:

data Value =

 ...

| Function (Value -> Value)

Then we change all the functions which use these types:

eval (Apply f e) env = apply (eval f env) (eval e env)

apply :: Value -> Value -> Value

apply (Function f) arg = f arg

apply _ _ = error "applying a non-function"

eval (Lambda x e) env = abstract x e env

abstract :: Ident -> Expr -> Env -> Value

abstract x e env = Function f

where f arg = eval e (define env x arg)

<Delete define_args>

elab (Rec f (Lambda x e)) env = env' where env' = define env f (abstract x e env')

We could also simplify the parser slightly, because we no longer need to recognise multi-argument functions.
