Stuart Golodetz

FAO: Dr. G. Jones

Procedural Programming

Sheet 5
Exercise A

1.

A few assumptions are made about the specification in answering this first part, which are commented on in question 2.

i)

Clear;

[Fine, sets f := {}]

Store("Fred",12);

[Fine, sets f := {("Fred",12)}]

Store("Amy",14);

[Fine, sets f := {("Fred",12), ("Amy",14)}]

Store("Fred",13)

[Who knows? Anything from working "as expected", to random nasal demons frying your hard disk... (*)]

Looking at the precondition, we can see that #f = MaxMapSize at this stage, so even though the behaviour we want (and probably expect) is that

f := {("Fred",13), ("Amy",14)}, as far as the precondition is concerned the behaviour is undefined.

(*) The reference (possibly obscure?) is to an alternative definition for "undefined behaviour". It's supposed to be vaguely amusing, most of the

time...
Note that in practice, nasal demons are unlikely to fry your hard disk with a nice, friendly language like Oberon (or possibly a nice, friendly

compiler like Obc, I'm not sure whether things like runtime bounds checking are required by the language itself). In the context of C++, however, the definition is more accurate (though whether nasal demons actually exist is yet to be covered in "Logic and Proof" - next week, perhaps?!).

ii)

Clear;

[Fine, sets f := {}]

Store("B",12);

[Fine, sets f := {("B",12)}]

Store("A",14);

[Fine, sets f := {("B",12),("A",14)}]

Delete("B");

[Fine, sets f := {("A",14)}]

Store("B",13)

[Fine, sets f := {("A",14),("B",13)}]

iii)

Clear;

[Fine, would set f := {}]

Store("Alice",17);

[Boom, array overwrite - "Alice" is too long when we include the null-terminator]

Recall("Fred")

[Doesn't compile - "discarding return values is a language extension" (*)]

(*) Being slightly less pedantic about it (just turn on the -x switch for Obc, for example), would return -1 if the code weren't already broken.

iv)

Clear;

[Fine, sets f := {}]

Store("Fred",12);

[Fine, sets f := {("Fred",12)}]

Store("Fred",13);

[Fine, sets f := {("Fred",13)}]

x := Size()

[Doesn't compile - "'x' has not been declared" (*)]

(*) And, once again being slightly less facetious(!), we'd expect it to return 1.

v)

Store("Fred",-1)

["Nasal Demons R Us" - we haven't even cleared the map, never mind trying to pass in a negative number]

2.

There are several things which are definitely unclear, and others which are just less than precise (intuition required, in other words). I'll try

and list as many as possible, though no doubt I'll miss some.

Define PM := "Precondition met", PN := "Precondition not met"

- What happens if we don't call Clear at the start? We need a comment saying something like:

(* The behaviour resulting from calling any of Store, Recall, Delete or Size before an initial call to Clear is undefined. *)

- We should probably say explicitly that f is a pseudonym for "the map" in what follows.

- The precondition for Store is too strict. We should be able to overwrite an existing element even if we're at the maximum size of the map. It

should read something like:

(* Precondition: (<there exists z> (x,z) is in the map | #f < MaxMapSize) & 0 <= y *)

- The effect for Store is imprecise and incomplete. It should read:

(* Effect: (PM) f := f\{(x,z): for all z (*)} + {(x,y)} (PN) The behaviour is undefined. (**) *)

(*) Note that there will only actually ever be at most one such element in the map at a time.

(**) Note that the programmer who would be assigned to write a key low-level module like Mapping would probably be of the cunning, defensive type, and would doubtless follow good programming practice by including an ASSERT in the implementation of Store. So in practice, the behaviour would be well-defined, but unhelpful. Of course, if it were more important to keep the program running, said programmer might be especially cunning, and log the failed attempt to use Store to an errors file, whilst otherwise silently ignoring the attempt. Note further that the programmer would avoid the mistake referred to in "Perspectives on Computing", namely that of outputting the error message to the screen whilst not logging it, a piece of incompetence which didn't do the London Ambulance Service much of a favour in the recent past (2002). And moving on...

- The effect for Recall is imprecise (we haven't really said what we mean by f(x), or "defined"). We want something like:

(* Precondition: <there exists y> (x,y) is in the map (*) *)

(* Effect: (PM) Returns the y in question. (PN) Returns -1. *)

(*) Note that if the precondition is met, the y in question will be unique.

- The effect for Delete is clear but imprecise. Preferable is:

(* Effect: f := f\{(x,y): for all y} *)

This is possibly slightly less clear, but more precise. (There is, after all, an inverse correlation between precision and readability. Consider

the C++ Standard for a fine example of a document which is as precise as possible (but no more precise...) but generally unintelligible unless

considerable time is devoted to understanding a given sentence.)
3.

We gave data one extra slot because we want to use the extra slot as a sentinel.

(a) No.

(b) No.

(c) Yes.

n = size would prevent case (c), since then for all 0 <= i < n, 0 <= data[i].val. It's a little over-restrictive, but it works (I think).

Exercise B

A tail recursive version of filter is as follows:

> filterIt :: (a -> Bool) -> [a] -> [a] -> [a]

> filterIt _ [] accum

= accum

> filterIt p (x:xs) accum

>
| p x

= filterIt p xs (accum ++ [x])

>
| otherwise

= filterIt p xs accum

> filter :: (a -> Bool) -> [a] -> [a]

> filter p xs = filterIt p xs []

PROCEDURE Defragment;

(*

Invariant: (For all j: 0 <= j < m: 0 <= data[j].val) & (m <= n)

- Clearly m <= n since we start off with m = 0, and at most add one to it in each of n iterations round the loop.

Postcondition: For all j: 0 <= j < n: 0 <= data[j].val

*)

VAR i,m: INTEGER;

BEGIN

m := 0;

FOR i := 0 TO n-1 DO

IF 0 <= data[i].val THEN

data[m] := data[i];

m := m+1

END

END;

n := m

END Defragment;

This may be slightly superior to the one in lectures because the lecture version swapped elements, whereas this one just copies elements into the right place in the array. The lecture version was ensuring that all the things at the end of the array had values less than 0, but as it happens we don't really care what the things at the end of the array are, because they're no longer in our map, so we can take advantage of that and weaken the invariant a bit to get a more efficient algorithm.

Exercise C

1. Search(3) = 2. Consider:

a[0..n] = [0,4,1,5,2,7], so n = 5.

i
j
k = (i+j) DIV 2
a[k]
a[k] <= 3

0
5
2

1
True

2
5
3

5
False

2
3

Now i+1 = j, so we stop and return i, which is 2.

2.

We start with:

Search(x) = i where 0 <= i < n & a[i] <= x < a[i+1]

a[0..n+1] is laid out as follows:

[-infinity,b[0],...,b[n-1],infinity]

So:

Search(x) =
0,
if x < b[0]

n,
if x >= b[n-1]

i,
s.t. b[i-1] <= x < b[i], otherwise

PROCEDURE FindMax(x: orderable): INTEGER;

BEGIN

RETURN Search(x)

END FindMax;

3.

PROCEDURE Search2(x: orderable): INTEGER;

(* precondition: a[0] < x <= a[n];

 postcondition: Search2(x) = i where

 0 <= i < n & a[i] < x <= a[i+1] *)

VAR i,j,k: INTEGER;

BEGIN

(* Invariant: a[i] < x <= a[j] *)

i := 0; j := n;

WHILE i+1 # j DO

k := (i+j) DIV 2;

IF a[k] < x THEN i := k ELSE j := k END

END;

RETURN i

END Search2;

4.

I assume we're talking about the new version of Search here?

Search2(x) =
0,
if x <= b[0]

n,
if x > b[n-1]

i,
s.t. b[i-1] < x <= b[i], otherwise

PROCEDURE FindMin(x: orderable): INTEGER;

BEGIN

RETURN Search2(x)

END FindMin;

Every element in the segment b[FindMin(x)..FindMax(x)) is equal to x.

Exercise D

MODULE StrMod;

PROCEDURE strcpy*(VAR dest,src: ARRAY OF CHAR);

VAR i: INTEGER;

BEGIN

i := 0;

REPEAT

dest[i] := src[i];

i := i+1

UNTIL src[i] = 0X;

END strcpy;

END StrMod.

...

(* Note: I haven't bothered to put the export marks in in this module *)

MODULE ExD;

IMPORT Out, StrMod;

(*

Coupling invariant:

f = {(data[i].key,data[i].val) | 0 <= i < n <= MAXMAPSIZE ^ 0 <= data[i].val}

#f = size

*)

CONST MAXMAPSIZE = 20;

CONST MAXSTRLEN = 20;

TYPE STRING = ARRAY MAXSTRLEN+1 OF CHAR;

TYPE ENTRY = RECORD

s: STRING;

i: INTEGER;

END;

VAR

data: ARRAY MAXMAPSIZE OF ENTRY;

n,size: INTEGER;

(* Effect: f := {} *)

PROCEDURE Clear();

BEGIN

n := 0;

size := 0;

END Clear;

(* Copy [m,n) to [m-1,n-1) *)

PROCEDURE Downshuffle(m,n: INTEGER);

VAR i: INTEGER;

BEGIN

FOR i := m TO n-1 DO

data[i-1] := data[i]

END

END Downshuffle;

PROCEDURE Defragment();

VAR i,m: INTEGER;

BEGIN

m := 0;

FOR i := 0 TO n-1 DO

IF data[i].i >= 0 THEN

data[m] := data[i];

m := m+1

END

END;

n := m

END Defragment;

PROCEDURE Delete(VAR s: ARRAY OF CHAR);

VAR f: INTEGER;

BEGIN

IF n = 0 THEN RETURN END;

f := Search(s);

IF data[f].s = s THEN

data[f].i := -1;

size := size-1

END

END Delete;

(* Returns f(x) if f(x) is defined, else -1 *)

PROCEDURE Recall(s: ARRAY OF CHAR): INTEGER;

VAR f: INTEGER;

BEGIN

IF n = 0 THEN RETURN -1 END;

f := Search(s);

IF data[f].s = s THEN

RETURN data[f].i
(* note that because we set deleted values to -1, we'll return -1 here if it's been deleted, as required *)

ELSE

RETURN -1

END

END Recall;

PROCEDURE Search(VAR s: ARRAY OF CHAR): INTEGER;

VAR i,j,k: INTEGER;

BEGIN

ASSERT(n # 0);

i := 0; j := n;

WHILE i+1 # j DO

k := (i+j) DIV 2;

IF data[k].s <= s THEN

i := k

ELSE

j := k

END

END;

RETURN i

END Search;

(* Returns #f *)

PROCEDURE Size(): INTEGER;

BEGIN

RETURN size

END Size;

PROCEDURE Store(s: ARRAY OF CHAR; i: INTEGER);

VAR f: INTEGER;

BEGIN

ASSERT(i >= 0);
(* it's a mapping to natural numbers only *)

(* Comment: Ah, lovely special-case code... Nothing like it! :-) *)

IF n = 0 THEN

StrMod.strcpy(data[0].s,s); (* data[0].s := s; *)

data[0].i := i;

n := n+1;

size := size+1;

ELSE

f := Search(s);

IF data[f].s = s THEN

data[f].i := i

ELSE

(* If we have to insert a new entry, try and make room for it. *)

IF n = MAXMAPSIZE THEN Defragment() END;

ASSERT(n < MAXMAPSIZE);
(* If there still isn't room, nous sommes dans un creek sans un paddle (comme ils

disent en franglais).

What we'd do in C++ is throw an exception, but this is Oberon... *)

IF ((f # 0) OR (data[f].s < s)) THEN (* Search returns 0 for all cases where s < data[1].s, so we need to check what's going

on if we get a 0 returned. *)

ASSERT(n < MAXMAPSIZE);

Upshuffle(f+1,n);

n := n+1;

size := size+1;

StrMod.strcpy(data[f+1].s,s); (* data[f+1].s := s; *)

data[f+1].i := i

ELSE
(* This is the point: It's possible to have s < data[0].s. *)

Upshuffle(0,n);

n := n+1;

size := size+1;

StrMod.strcpy(data[0].s,s); (* data[0].s := s; *)

data[0].i := i

END

END

END

END Store;

(* Copy [m,n) to [m+1,n+1) *)

PROCEDURE Upshuffle(m,n: INTEGER);

VAR i: INTEGER;

BEGIN

i := n;

WHILE i > m DO

data[i] := data[i-1];

i := i-1

END

END Upshuffle;

END ExD.
