Stuart Golodetz

FAO: Dr. G. Jones

Procedural Progamming

Week 4
Exercise A

1. There are two answers to this. In terms of the value of x after the call, it's unchanged, so there is no effect. In terms of what actually

happens, the effect is that x is copied into a temporary, x is assigned to itself, and then the temporary is copied into x, after which the

temporary ceases to exist. Supposing that x were a larger type than an integer, this could take a little while, and is thoroughly pointless.

(Random aside: This wouldn't necessarily be true in C++; you could implement the type's operator= to do something other than mere assignment, e.g. it could output "Assignment operator called", or something like that. If that were the case, then the call to Swap would have a visible effect on the program.)

2. Firstly, we note that it certainly *should* be the case that the two are the same (considering what Swap is supposed to do). To show it:

Swap(x,y)

-t := x

{x=x,y=y,t=x}

-x := y

{x=y,y=y,t=x}

-y := t

{x=y,y=x,t=x}

{x=y,y=x}

Swap(y,x)

-t := y

{x=x,y=y,t=y}

-y := x

{x=x,y=x,t=y}

-x := t

{x=y,y=x,t=y}

{x=y,y=x}

So the end result is the same, although we got there by different paths. ("All 'Swap' roads lead to Rome?" Sorry, a bit of light humour... :-))

3.

t := 0;

i := 3;

{since a[0] = 3}

a[3] := 0
{since i = 3}

So this code sets t to 0, i to 3, and now a[0..5) = [3,1,4,0,2]

(Presumably [3,1,4,1,2] had something to do with pi being 3.1412 to 4DP? Or perhaps it's just random coincidence.)

4.

Swap(i,a[i]) = Swap(0,a[0])

So the effect of it is to set i to 3, and a[0] to 0.

Exercise B

They're not the same. The answer depends on the order in which the operands of + are evaluated. Based on a bit of experimentation with Obc, it

seems to be the case that the operands are evaluated left-to-right, in which case the first program assigns 5+2*3=11 to z, and the second program

assigns 2*3+1=7 to z.

(Random aside: In C++, the behaviour of both programs would be unspecified, to the best of my knowledge, because the order of evaluation of the operands is unspecified. I'm not sure whether the same is true in Oberon; it's either the case that Obc *has* to evaluate them left-to-right, or

it's an implementation decision, and it's not possible to tell which purely from experimenting with the compiler.)

Exercise C

1. Square(10,w) sets w := 100, since it does w := 0, and then w := w + 10, 10 times, i.e. it adds 10*10 to 0 and stores the result in w.

 Square(w,w) sets w := w*w.

2. You can't do Square(10,w) any more, because 10 isn't a variable. (In C++ terminology, the error is "A reference that is not to 'const' cannot

be bound to a non-lvalue", where an lvalue is (loosely) something you can take the address of.)

 Square(w,w) now sets w := 0. To see why, consider what happens:

k := 0; w := 0;

WHILE k # w DO (* WHILE 0 # 0 DO *)

...

END

(* w = 0 *)

Exercise D

(*

1. If xs is completely sorted in advance, then we get O(n^2) performance (the worst-case performance of quicksort). Consider:

[1,2,3,4,5]

x = 1

us = []

vs = [1]

ws = [2,3,4,5]

So we have only reduced the size of the list by one by doing this:

T(n) = T(n-1) + O(n)

T(n) = O(n^2)

As opposed to what we really want, which is:

T(n) = 2T(n/2) + O(n)

T(n) = O(n lg n)

Partially-sorted input is generally bad. This includes arrays sorted in reverse order. Basically, anything where the first element is dividing the

list into two sublists where one of the sublists is much smaller than the other is not ideal.

2. If you choose the pivot randomly, you are highly unlikely to get the worst case for every single sublist, whatever the input. It also makes it

impossible for people to deliberately choose bad input to slow your program to a crawl. You can't say that some inputs are worse than others,

since even the same input will almost certainly not be sorted in exactly the same way twice, assuming you didn't implement the random number

generator poorly.

3.

<see below>

4.

PROCEDURE Qsort(m,n: INTEGER);

VAR l, r: INTEGER;

BEGIN

IF m # n THEN

Partition(m,n,l,r);

Qsort(m,l);

Qsort(r,n)

END

END Qsort;

5.

x := head xs;

us,vs,ws := [],[],[];

while xs # [] do

y := head xs;

if y < x then

xs,us := delete y xs, add y us

elsif y = x then

xs,vs := delete y xs, add y vs

else

xs,ws := delete y xs, add y ws

end

end;

6.

<see below>

7.

If there are lots of duplicates in the input, this version of quicksort just groups them all into a sorted middle section, and doesn't have to

sort them again; the version given in lectures puts the duplicates into the upper segment and sorts them. When there are a lot of duplicates, this

is rather time-consuming. Consider sorting the list of length 100,000 looking like this:

[1,1,1,1,...,1]

The disadvantage of this version of quicksort is that if there are no duplicates, we're simply making the code more complex for no good reason.

*)

MODULE ExD;

IMPORT Out;

(* This implementation isn't "in-place", but since we're implementing a version of the functional program, we don't have the freedom to reorder

the lists, so doing it in-place isn't an option. *)

PROCEDURE Qsort3(VAR xs: ARRAY OF INTEGER; X: INTEGER);
(* X is the length of xs *)

VAR

us,vs,ws: ARRAY MAXSIZE OF INTEGER;

U,V,W: INTEGER;

(* the lengths of the arrays us,vs,ws *)

i: INTEGER;

BEGIN

IF X = 1 THEN RETURN END;

U := 0; V := 0; W := 0;

FOR i := 0 TO X-1 DO

IF xs[i] < xs[0] THEN

us[U] := xs[i];

U := U + 1

ELSIF xs[i] = xs[0] THEN

vs[V] := xs[i];

V := V + 1

ELSE

ws[W] := xs[i];

W := W + 1

END

END;

IF U # 0 THEN Qsort3(us,U) END;

IF W # 0 THEN Qsort3(ws,W) END;

X := 0;

FOR i := 0 TO U-1 DO

xs[X] := us[i];

X := X + 1

END;

FOR i := 0 TO V-1 DO

xs[X] := vs[i];

X := X + 1

END;

FOR i := 0 TO W-1 DO

xs[X] := ws[i];

X := X + 1

END;

END Qsort3;

PROCEDURE Swap(VAR x,y: INTEGER);

VAR t: INTEGER;

BEGIN

t := x;

x := y;

y := t

END Swap;

PROCEDURE Partition(m,n: INTEGER; VAR l,r: INTEGER);

VAR k,x,y: INTEGER;

BEGIN

(* Establish the invariant *)

l := m;

r := m;

k := n;

(* So at this stage, us = vs = ws = [], and xs = a[m..n) *)

x := a[m];

WHILE k # r DO

(* while xs # [] do *)

y := a[r];
(* y := head xs; *)

IF y < x THEN

(* xs,us := delete y xs, add y us *)

Swap(a[r],a[l]);

l := l+1;

r := r+1

(* Explanation: The easiest way to get a[r] into us is to swap it with the thing at the start of vs, and then move vs up by 1, since the thing

from vs which we just put in xs will end up back in vs after we do the shift up. *)

ELSIF y = x THEN

(* xs,vs := delete y xs, add y vs *)

r := r+1

(* Explanation: So now vs = a[l..r+1), xs = a[r+1,..k) (talking about the old r, obviously), i.e. we've moved a[r] from xs to vs. *)

ELSE

(* xs,ws := delete y xs, add y ws *)

Swap(a[r],a[k-1]);

k := k-1

(* Explanation: We can move the last element from xs into ws by just moving the boundary down by 1. But the thing at the end of xs shouldn't go in ws. What we want to put in ws is the thing at the start of xs, and leave the thing at the end in xs. So we just swap them, and move the

boundary down as before. *)

END

END

END Partition;

PROCEDURE Qsort6(m,n: INTEGER);

VAR l, r: INTEGER;

BEGIN

IF m # n THEN

Partition(m,n,l,r);

Qsort6(m,l);

Qsort6(r,n)

END

END Qsort6;

CONST MAXSIZE = 10;

VAR

a: ARRAY MAXSIZE OF INTEGER;

i: INTEGER;

BEGIN

a[0] := 5; a[1] := 3; a[2] := 4; a[3] := 15; a[4] := 23; a[5] := 17; a[6] := 84; a[7] := 9; a[8] := 7; a[9] := 21;

(*
Qsort3(a, 10); *)

Qsort6(0,10);

FOR i := 0 TO MAXSIZE-1 DO

Out.Int(a[i],0);

Out.Char(' ')

END;

Out.Ln

END ExD.
