Stuart Golodetz













FAO: Dr. G. Jones

Procedural Programming

Tutorial Exercises: Week 1

Exercise A

i) MODULE Echo; <-- needs the semi-colon (syntax error)

ii) IMPORT In, Out; <-- since we use Out (syntax error)

iii) Out.Char(c); <-- 2 mistakes - c not 'c', because we want to output the character we read in (logical error), and semi-colon needed (syntax)

iv) In.Char(c) <-- redundant semi-colon at the end of the line (though no harm done in putting in there, technically)

v) END Echo. <-- 2 mistakes - Echo not Copy (syntax, we called the module Echo at the top), and missing a full-stop (syntax)

Corrected version:

MODULE Echo;

IMPORT In, Out;

VAR c: CHAR;

BEGIN


In.Char(c);


WHILE In.Done DO



Out.Char(c);



In.Char(c)


END

END Echo.

Exercise B

Firstly, here's an implementation of the program that was actually wanted:

MODULE Average;

IMPORT In, Out;

VAR n: INTEGER; ave, numRead, sum: REAL;

BEGIN


numRead:=0;


sum:=0;


LOOP



In.Int(n);



IF ~In.Done THEN EXIT END;



sum:=sum + n;



numRead:=numRead + 1;



ave:=sum / numRead;



Out.Real(ave);



Out.Ln


END

END Average.

And just for comparison (and because this alternative problem proved more interesting because it had more to it), here's the other version I wrote before:

(*

A quick comment:

This program assumes that by "running average", what's meant is the average of the last three inputs (i.e. similar to how mouse-smoothing works in first-person shooters, where the inputs from the last three frames are averaged).

*)

MODULE Average;

IMPORT In, Out;

PROCEDURE Min(x,y: INTEGER): INTEGER;

BEGIN


IF x < y THEN



RETURN x


ELSE



RETURN y


END

END Min;

(*

Note: The intention in declaring the parameter with VAR here is to avoid an expensive copy of the integer array. Clearly Sum doesn't actually change arr, but declaring it VAR is intended to mirror how one would pass large objects in C++ in this instance (i.e. equivalent of const std::vector<int>&, passing by reference to const).

*)

PROCEDURE Sum(VAR arr: ARRAY OF INTEGER): INTEGER;

VAR i, endpoint, sum: INTEGER;

BEGIN


sum:=0;


endpoint:=LEN(arr) - 1; (* Cache the value rather than recalculating it in the loop each time. Question: Are the loop bounds reevaluated in Oberon? In C++, if we write something like for(int i=0; i<s.length(); ++i), s.length() would get reevaluated each time. *)


FOR i:=0 TO endpoint DO



sum:=sum + arr[i]


END;


RETURN sum

END Sum;

PROCEDURE ZeroArray(VAR arr: ARRAY OF INTEGER);

VAR i, endpoint: INTEGER;

BEGIN


endpoint:=LEN(arr) - 1;


FOR i:=0 TO endpoint DO



arr[i]:=0


END;

END ZeroArray;

CONST AVESIZE = 3; (* To make it clearer what's going on, as well as easier to change if necessary. A.K.A. "Magic constants = Bad practice" *)

VAR n: ARRAY AVESIZE OF INTEGER; curReadPos, numRead: INTEGER; ave: REAL;

BEGIN


ZeroArray(n);


numRead:=0;


In.Int(n[0]);


curReadPos:=1; (* The next integer will now be read into n[1]. *)


WHILE In.Done DO



numRead:=numRead + 1;



ave:=Sum(n) / Min(numRead, AVESIZE);



Out.Real(ave);



Out.Ln;



In.Int(n[curReadPos]);



curReadPos:=(curReadPos + 1) MOD AVESIZE (* Idiomatic (hopefully!) way to cycle to the next element in a 'circular' array. *)


END

END Average.

Exercise C

MODULE First;

IMPORT Args, Conv, In, Out;

CONST NEWLINE = 0AX;

(*

Semantic constraint: Assumes the string passed in is large enough to hold the current line.

*)

PROCEDURE ReadLine(VAR str: ARRAY OF CHAR);

VAR ch: CHAR; curPos: INTEGER;

BEGIN


curPos:=0;


In.Char(ch);


WHILE In.Done & (ch # NEWLINE) DO



str[curPos]:=ch;



curPos:=curPos+1;



In.Char(ch)


END;


str[curPos]:=0X

END ReadLine;

(*

Note: Assumes that no line in the file is longer than 255 characters (not 256, because strings are null-terminated).

*)

VAR curLine: ARRAY 256 OF CHAR; lines: ARRAY 5 OF CHAR; i, n: INTEGER;

BEGIN


Args.GetArg(1,lines);


n:=Conv.IntVal(lines);


FOR i:=1 TO n DO



ReadLine(curLine);



Out.String(curLine);



Out.Ln


END

END First.

Exercise D

Simply inserting Out.Int(i,-3); on the line below ReadLine(curLine); will do the trick.
