Procedural Programming
Lab 1 - Codebreaker
How could you define the Xor operation if it were not provided as a primitive? (Page 20)
PROCEDURE Xor(x, y: INTEGER): INTEGER;

BEGIN

RETURN Bit.And(Bit.Or(x,y),Bit.Not(Bit.And(x,y)))

END Xor;
What if And, Or and Not were not available either? (Page 20)
(* Xor when x and y can only be 0 or 1 *)

PROCEDURE MiniXor(x, y: INTEGER): INTEGER;

BEGIN

IF x = y THEN

RETURN 0

ELSE

RETURN 1

END

END MiniXor;

PROCEDURE Xor(x, y: INTEGER): INTEGER;

BEGIN

IF (x = 0) & (y = 0) THEN

RETURN 0

ELSE

RETURN MiniXor(x MOD 2, y MOD 2) + 2*Xor(x DIV 2, y DIV 2)

END

END Xor;
Suppose you encrypted a file, then forgot the key, but you could remember the first few characters of the file. How could you recover the key? (Page 24)
./crypt <first few characters of message> encryptedFile
It’s possible that your program could accidentally find a matching section of cipher-text that didn’t result from enciphering the crib, and thereby guess the wrong key. Can you construct an example where this happens? (Page 26)
The test case is one such example:

./crypt asasd santa >message

./crib ristmas message

riw'k
(this isn’t the correct key

asasd
…we might think of encrypting the message twice with two different keys, so as to give the effect of a much longer key. How should we choose the lengths of the two keys? (Page 26)
The two lengths should be relatively prime to each other.
Our exclusive-or based cipher makes it possible to decrypt a doubly-encrypted message by applying the two keys in either order. What properties of the exclusive-or operation make this so? (Page 26)
(i)
Xor(x,x) = 0 for any x

(ii)
Xor(x,0) = x for any x
(iii)
Xor is associative
(iv)
Xor is commutative

Thus (where X represents Xor for brevity):

(((a X b) X c) X c) X b)

= a X b X b X c X c

{by (iii) and (iv)}

= a X 0 X 0

{by (i)}
= a

{by (ii)}

Similarly:

(((a X b) X c) X b) X c)

= a
