Stuart Golodetz

Object Oriented Programming

Tutorial 3
Exercise 1

If you want to understand our remark about "all or nothing" control of the traversal, then define (as if it

were going to be part of a client of StringMapping) a method:

public boolean hasValue(String value)

// returns true iff author associates some name with value

using each of the following styles

1. the Cursor style

2. the MappingVisitor style

Which is more efficient? Which is easier to understand?

Answer:

1.

public boolean hasValue(String value)

{

for(StringCursor it=author.getKeys(); it.hasCurrent(); it.next())

{

String mapValue = author.get(it.current());

if(mapValue.equals(value)) return true;

}

return false;

}

2.

public boolean hasValue(String value)

{

class HVMappingVisitor extends MappingVisitor

{

public boolean m_bValFound = false;

public void visit(String mapKey, String mapValue)

{

if(m_bValFound) return;

if(mapValue.equals(value)) m_bValFound = true;

}

}

HVMappingVisitor mv = new HVMappingVisitor();

author.visit(mv);

return mv.m_bValFound;

}

The first one is clearly more efficient (it stops when it's found the value, rather than continuing through all the

other elements, even if only a tiny amount of work is being done for each element in the second version). It's also

a lot easier to understand. The second version is a bit of a hack. What we'd like to do (well, I suppose we wouldn't

really "like" to do it, but it's a way of making the second version more efficient) is to change the MappingVisitor

interface so that visit throws an exception. Then we could write something like:

public boolean hasValue(String value)

{

class HVMappingVisitor extends MappingVisitor

{

public boolean m_bValFOund = false;

public void visit(String mapKey, String mapValue) throws java.lang.Exception

{

if(mapValue.equals(value))

{

m_bValFound = true;

throw new java.lang.Exception();

}

}

}

HVMappingVisitor mv = new HVMappingVisitor();

try { author.visit(mv); }

catch(java.lang.Exception e) {}

finally { return mv.m_bValFound; }

}

This is distinctly unpleasant (even if, in a sense, "neat") code, though, so we don't actually want to do it like this.

Exercise 2

Was it essential that we generated the keys in ascending order of their occurrence in the array, or was it simply

incidental?

Why did we need the size parameter? Can't it be inferred from names.length?

Answer:

It was simply incidental (and indeed the next slide generates them in the opposite order).

The size parameter is the size of the mapping, not the size of the array. We haven't guaranteed that the mapping

occupies the whole array, so we can't infer size from names.length.

Exercise 3

(For people who like abstract specifications) The best way of clarifying the way we will use the Iterator or

Enumeration methods is to write down a more formal specification, as we did when we introduced StringCursor.

Specify the Enumeration interface in a similar style.

Why would it be a little harder to specify the Iterator interface this way?

Answer:

interface Enumeration

{

// represents unseen : <Object>

boolean hasMoreElements();
// returns unseen /= <>

Object nextElement();

// require unseen /= <>

// ensures unseed = old(tail(unseen))

// returns head(unseen)

}

It would be a little harder to specify Iterator this way because it has an optional (bleurgh) remove method.

Exercise 4

(Straightforward)

The adapter class EnumOfCursor, which is sketched below, may be used to transform any Cursor into an Enumeration

which yields the same elements in the same order.

class EnumOfCursor implements Enumeration

{
...

public EnumOfCursor(Cursor i)

{
...

}

...

Complete this sketch, and build a similar adapter that constructs an Iterator from a Cursor.

The need for such adapters often arises in situations where source code isn't available to (or owned by) the

programmer. For example, a piece of legacy code may deal with an abstraction using one kind of class, and a bought-in

library might deal with the same kind of abstraction via another class. That's when we need an adapter.

Answer:

class EnumOfCursor implements Enumeration

{

private Cursor m_i;

public EnumOfCursor(Cursor i)

{

m_i = i;

}

public boolean hasMoreElements()

{

return m_i.hasCurrent();

}

public Object nextElement()

{

Object o = m_i.current();

m_i.next();

return o;

}

}

class IterOfCursor implements Iterator

{

private Cursor m_cursor;

public IterOfCursor(Cursor cursor)

{

m_cursor = cursor;

}

public boolean hasNext()

{

return m_cursor.hasCurrent();

}

public Object next()

{

Object o = m_cursor.current();

m_cursor.next();

return o;

}

public void remove()

{

// BLEURGH

}

}

Exercise 5

(Straightforward) The adapter class CursorOfEnum, which is sketched below, may be used to transform any Enumeration

into a Cursor which yields the same elements in the same order.

class CursorOfEnum implements Cursor

{

...

public CursorOfEnum(Enumeration e) { ... }

...

Complete this sketch, and build a similar adapter class that constructs a Cursor from an Iterator.

Can the following definition be improved?

class EnumOfIterator implements Enumeration

{

private Enumeration en;

public boolean hasMoreElements()
{ return en.hasMoreElements(); }

public Object nextElement()

{ return en.nextElement(); }

public EnumOfIterator(Iterator it)
{ en = new EnumOfCursor(new CursorOfIterator(it)); }

}

Answer:

class CursorOfEnum implements Cursor

{

private Enumeration m_e;

private Object m_cachedObj;

public CursorOfEnum(Enumeration e)

{

m_e = e;

next();

}

public boolean hasCurrent()

{

return (m_cachedObj != null);

}

public Object current()

{

return m_cachedObj;

}

public void next()

{

if(m_e.hasMoreElements()) m_cachedObj = m_e.nextElement();

else m_cachedObj = null;

}

}

class CursorOfIter implements Cursor

{

private Iterator m_it;

private Object m_cachedObj;

public CursorOfIter(Iterator it)

{

m_it = it;

next();

}

public boolean hasCurrent()

{

return (m_cachedObj != null);

}

public Object current()

{

return m_cachedObj;

}

public void next()

{

if(m_it.hasNext()) m_cachedObj = m_it.next();

else m_cachedObj = null;

}

}

Yes, the definition can be improved:

class EnumOfIter implements Enumeration

{

private Iterator m_it;

public boolean hasMoreElements()
{ return m_it.hasNext(); }

public Object nextElement()

{ return m_it.next(); }

public EnumOfIter(Iterator it)

{ m_it = it; }

}

Exercise 6

(Trivial) Revise the definition of HashStringMapping (from the earlier material of the course) so that it

incorporates a getKeys() method. Note that the Hashtable class has a method Enumeration keys() which yields an

enumeration of the keys of the table. You may (of course) use an adapter you defined in an earlier exercise.

Answer:

Our only real problem here is that StringCursor and Cursor aren't the same. This makes our life mildly annoying,

but we can define:

class StringCursorOfCursor implements StringCursor

{

private Cursor m_cursor;

public boolean hasCurrent()

{ return m_cursor.hasCurrent(); }

public String current()

{ return (String)m_cursor.current(); }

public void next()

{ m_cursor.next(); }

public StringCursor(Cursor cursor)
{ m_cursor = cursor; }

}

Then:

class HashStringMapping implements StringMapping

{

...

public StringCursor getKeys()

{

return new StringCursorOfCursor(new CursorOfEnum(ht.keys()));

}

...

}

Of course, in practice we'd probably define a StringCursorOfEnum instead, to remove a layer of indirection, but that

looks far too much like re-inventing the wheel here.

Exercise 7

(Straightforward)

Define classes with constructors EmptyCursor(), SingletonCursor(Object o), ArrayCursor(Object[] os) that implement

cursors whose starting states respectively have unseens: <>, <o>, <os[0], os[1], ..., os[os.length-1]>.

Your implementations should raise an exception if their next() or current() methods are called in a state where there

are no unseen elements left.

(Supplementary) Does EmptyCursor really need a public constructor? Isn't one EmptyCursor much the same as another?

What effect do these considerations have on your implementation? (Hint: think of using a final static field and

making the constructor private).

(Supplementary) We don't really need all these classes do we?

Answer:

class EmptyCursor implements Cursor

{

public boolean hasCurrent()

{ return false; }

public Object current()

{ throw new java.lang.Error(); }

public void next()

{ throw new java.lang.Error(); }

// Has a compiler-generated default constructor, so no point in providing one explicitly.

}

class SingletonCursor implements Cursor

{

private Object m_o;

public boolean hasCurrent()

{ return (m_o != null); }

public Object current()

{ if(hasCurrent()) return m_o; else throw new java.lang.Error(); }

public void next()

{ if(hasCurrent()) m_o = null; else throw new java.lang.Error(); }

public SingletonCursor(Object o)
{ m_o = o; }

}

class ArrayCursor implements Cursor

{

private Object[] m_os;

private int m_index = 0;

public boolean hasCurrent()

{ return m_index < m_os.length; }

public Object current()

{ if(hasCurrent()) return m_os[m_index];

 else throw new java.lang.Error(); }

public void next()

{ if(hasCurrent()) ++m_index; else throw new java.lang.Error(); }

public ArrayCursor(Object[] os)
{ m_os = os; }

}

EmptyCursor doesn't need a public constructor. Better would be (using the hint):

class EmptyCursor implements Cursor

{

final private static s_instance = new EmptyCursor();

private EmptyCursor()

{}

public static instance()

{ return s_instance; }

public boolean hasCurrent()

{ return false; }

public Object current()

{ throw new java.lang.Error(); }

public void next()

{ throw new java.lang.Error(); }
}

No, we don't need all these classes. EmptyCursor is a total waste of space (all it does is throw errors), and

SingletonCursor is pretty pointless as well. ArrayCursor is quite useful though (aside from the ridiculous amount of

overhead it imposes on its clients for something as simple as iterating through an array).

Exercise 8

Catenation of iterators/cursors can be useful: define a Cursor subclass with constructor

CatCursors(Cursor a, Cursor b)

which yields the elements of the iteration a followed by those of b; i.e. unseen = a.unseen ++ b.unseen. Think very

carefully about the class invariant if you don't want to get confused.

Answer:

class CatCursors implements Cursor

{

final private Cursor m_a, m_b;

public CatCursors(Cursor a, Cursor b)

{

m_a = a;

m_b = b;

}

public boolean hasCurrent()

{

return m_a.hasCurrent() || m_b.hasCurrent();

}

public Object current()

{

if(m_a.hasCurrent()) return m_a.current();

else if(m_b.hasCurrent()) return m_b.current();

else throw new java.lang.Error();

}

public void next()

{

if(m_a.hasCurrent()) m_a.next();

else if(m_b.hasCurrent()) m_b.next();

else throw new java.lang.Error();

}

}

Exercise 9

Define a Cursor subclass with constructor

AltCursors(Cursor a, Cursor b)

which yields alternate elements of the iterations a and b. When one of them runs out, the alternator should continue

with the remainder of the other.

Answer:

class AltCursors implements Cursor

{

final private Cursor m_a, m_b;

private Cursor m_active;

public AltCursors(Cursor a, Cursor b)

{

m_a = a;

m_b = b;

if(m_a.hasCurrent()) m_active = m_a;

else m_active = m_b;

}

public boolean hasCurrent()

{

return m_active.hasCurrent();

}

public Object current()

{

if(m_active.hasCurrent()) return m_active.current();

else throw new java.lang.Error();

}

public void next()

{

if(m_active.hasCurrent()) m_active.next();

else throw new java.lang.Error();

if(m_active == m_a && m_b.hasCurrent()) m_active = m_b;

else if(m_a.hasCurrent()) m_active = m_a;

}

}

Exercise 10

(Optional: Harder than CatCursors or AltCursors) Build a class with constructor FlatCursors(Cursor cs) that expects cs

to be a cursor whose unseen elements are all Cursors. The unseen elements of FlatCursors(Cursor cs) should be the

catenation of the unseens of the component cursors.

Functional programmers will recognise this as being analogous to Haskell's flatten. I'd like you to try to consume the

elements of cs as "lazily" as possible, so the obvious transliteration of the Haskell definition of flatten using

EmptyCursor and CatCursors is not quite the thing!

Answer:

class FlatCursors implements Cursor

{

final private Cursor m_cs;

public FlatCursors(Cursor cs)

{

m_cs = cs;

}

public boolean hasCurrent()

{

// Case #1: We've finished all the cursors, so we're done.

if(!m_cs.hasCurrent()) return false;

// Case #2: We haven't finished all the cursors, and our current cursor isn't yet finished.

if(((Cursor)m_cs.current()).hasCurrent()) return true;

/* Case #3: We haven't finished all the cursors, but our current cursor is finished. If we call a

 next(), we may actually have finished all the cursors. Alternatively, we may still be on some new

 cursor, which could be empty (and thus trivially finished), etc. Our solution is to move onto the

 next cursor, and tail recurse. Some people might consider this dubious coding style, because our

 function hasCurrent() has a side-effect. I would counter this with the following arguments:

i) From the client's perspective, the object has not changed. The fact that we've moved onto

 the next Cursor internally is actually irrelevant to the client. Compare this to changing

 mutable members of an object within a logically const function in C++: there the same

 rationale applies, namely that although we are changing the object internally, as far as

 the client is concerned the function should be const (it being logically so).

ii) I don't see that we have a great deal of choice about doing it this way. If we are on a

 cursor which has reached its end, we can't tell whether we have a current element unless

 we move onto the next cursor. We can't query the next cursor without moving to it, and we

 can't move back having done so.

*/

m_cs.next();

return hasCurrent();

}

public Object current()

{

if(hasCurrent()) return ((Cursor)m_cs.current()).current();

else throw new java.lang.Error();

}

public void next()

{

if(hasCurrent()) ((Cursor)m_cs.current()).next();

else throw new java.lang.Error();

}

}

This isn't obviously correct, so I'll demonstrate what happens with an example:

Suppose we have cursors over the following:

Empty

0 1 2

Empty

3 4

5

Initially:

If we call hasCurrent()

m_cs.hasCurrent() returns true, m_cs.current().hasCurrent() returns false,

m_cs.next() moves to the next list, return hasCurrent(), m_cs.hasCurrent() returns true,

m_cs.current().hasCurrent() returns true, the whole thing returns true -> correct

Afterwards: (1)

If we call current()

hasCurrent() returns true, and ensures we're in the right place to get the current

element, return m_cs.current().current() returns 0 -> correct

If we call next()

hasCurrent() returns true, and ensures we're in the right place to move to the

next element, m_cs.current().next() moves us along by one (the new current element is 1)

-> correct

At (1):

If we call hasCurrent()

m_cs.hasCurrent() returns true, m_cs.current().hasCurrent() returns true, the whole

thing returns true -> correct

If we call current()

hasCurrent() returns true, returns m_cs.current().current() returns 0 -> correct

If we call next()

hasCurrent() returns true, m_cs.current().next() moves us along by one (the new

current element is 1) -> correct

etc.

At this stage, it gets rather boring to go through it in detail. It's not quite the same, but I thought I'd write a

little test program to demonstrate that it works (for my own peace of mind, as much as anything else):

public class Test

{

public static void main(String[] args)

{

Cursor[] arr = new Cursor[5];

arr[0] = new EmptyCursor();

arr[1] = new ArrayCursor(new Integer[] {new Integer(0),new Integer(1),new Integer(2)});

arr[2] = new EmptyCursor();

arr[3] = new ArrayCursor(new Integer[] {new Integer(3),new Integer(4)});

arr[4] = new ArrayCursor(new Integer[] {new Integer(5)});

Cursor cs = new ArrayCursor(arr);

Cursor fcs = new FlatCursors(cs);

while(fcs.hasCurrent())

{

System.out.println(fcs.current());

fcs.next();

}

}

}

Output:

0

1

2

3

4

5

(as expected)

Exercise 11

Given

public interface Predicate

{

public boolean pass(Object o);

}

Define a Cursor subclass with constructor

FilterCursor(Cursor a, Predicate p)

which yields (in the same order that a yields them) the elements of a for which p.pass yields true. How might you

write a more formal specification of this class?

Answer:

class FilterCursor implements Cursor

{

final private Cursor m_a;

final private Predicate m_p;

public FilterCursor(Cursor a, Predicate p)

{

m_a = a;

m_p = p;

}

public boolean hasCurrent()

{

// Case #1: We're at the end of the underlying cursor, so there aren't any more elements at all,

// regardless of whether they pass the filter.

if(!m_a.hasCurrent()) return false;

// Case #2: We have a current element which passes the filter.

if(m_p.pass(m_a.current())) return true;

// Case #3: We haven't reached the end of the underlying cursor, but our current element doesn't

// pass the filter. Using the same idiom as in Exercise 10 (above), we move onto the next element,

// and tail recurse.

m_a.next();

return hasCurrent();

}

public Object current()

{

if(hasCurrent()) return m_a.current();

else throw new java.lang.Error();

}

public void next()

{

if(hasCurrent()) m_a.next();

else throw new java.lang.Error();

}

}

Amazingly enough, it works! :-) I'm as surprised as I expect you are (given the nastiness of the code)...

String[] sarr = new String[] {"a","b","c","d"};

Predicate p = new Predicate() {

public boolean pass(Object o)

{

String s = (String)o;

return s.equals("b") || s.equals("d");

}

};

Cursor filc = new FilterCursor(new ArrayCursor(sarr), p);

while(filc.hasCurrent())

{

System.out.println(filc.current());

filc.next();

}

Output:

b

d

Formal Specification (the best attempt of someone who doesn't do Formal Program Design):

class FilterCursor

{

/*

 represents unseen: <Object>

 public boolean hasCurrent()

 returns filter (p.pass) unseen /= <>

 Object current()

 require filter (p.pass) unseen /= <>

 returns head (filter (p.pass) unseen)

 void next()

 require filter (p.pass) unseen /= <>

 ensures filter (p.pass) unseen = old(tail(filter (p.pass) unseen))

*/

}

Exercise 12 (An aborting string iterator)

One way of checking cheaply that a collection hasn't changed during the execution of an iterator is for the collection

to keep a counter of the number of modifications that have been done to it, and for the iterator, when it is made, to

make a note of the count at that moment. When the iterator's next() method is called, it can compare its note with the

current counter in the collection. If they differ, then the collection has been changed, and the iterator shouldn't be

allowed to continue.

Reimplement the getKeys() method of ArrayStringMapping along these lines.

Answer:

Something like this:

class ArrayStringMapping

{

private int modifications;

...

public StringCursor getKeys()

{

return new AbortingStringArrayCursor(modifications);

}

// Note that this isn't static, so each object is associated with a given instance of ArrayStringMapping.

private class AbortingStringArrayCursor extends StringCursor

{

private int index = 0;

private int initialModifications;

public AbortingStringArrayCursor(int modifications)

{ initialModifications = modifications; }

private String cached = size > 0 ? names[0] : null;

public boolean hasCurrent()
{ return index < size; }

public String current()

{ return cached; }

public void next()

{

if(modifications > initialModifications || index >= size) throw new java.lang.Error();

else

{

++index;

cached = index < size? names[index] : null;

}

}

}

}

