Stuart Golodetz

Object Oriented Programming

Tutorial 1
The first few exercises are laballed within the class definition.

public class LinkedList implements Deq

{

// Exercise 1

private Cell m_head = null;

private Cell m_tail = null;

private int m_length = 0;

public int length()

{

return m_length;

}

public void insertAtFront(Object o)

{

++m_length;

if(m_head == null)
// then also m_tail == null

{

m_head = m_tail = new Cell(o);

}

else

{

m_head.insBefore(o);

m_head = m_head.getPrev();

}

}

public void insertAtEnd(Object o)

{

++m_length;

if(m_tail == null)
// then also m_head == null

{

m_head = m_tail = new Cell(o);

}

else

{

m_tail.insAfter(o);

m_tail = m_tail.getNext();

}

}

public Object getFirst()

{

assert(m_length > 0);
// requires a non-empty list

--m_length;

Object o = m_head.getData();

if(m_head == m_tail)

{

m_head = m_tail = null;

}

else

{

m_head = m_head.getNext();

m_head.delPrev();

}

return o;

}

public Object getLast()

{

assert(m_length > 0);
// requires a non-empty list

--m_length;

Object o = m_tail.getData();

if(m_head == m_tail)

{

m_head = m_tail = null;

}

else

{

m_tail = m_tail.getPrev();

m_tail.delNext();

}

return o;

}

public String toString()

{

if(m_head == null) return "<Empty List>";

String ret = "";

Cell cur = m_head;

do

{

ret += cur.getData() + " ";

cur = cur.getNext();

} while(cur != m_head);

return ret;

}

// Exercise 2

// No new cells are generated with these methods. Even if you could change the Cell class, there's no need.

// Note that this is due to the way our linked list is implemented, namely without a header cell.

public Object recycleFirst()

{

m_head = m_head.getNext();

m_tail = m_tail.getNext();

return m_tail.getData();

}

public Object recycleLast()

{

m_head = m_head.getPrev();

m_tail = m_tail.getPrev();

return m_head.getNext().getData();
// if we're returning head(old seq) - was expecting last(old seq) here

}

// Exercise 4

// When I first did this exercise, I assumed that append was to be a method of LinkedList. After looking at the answers,

// it seems it was supposed to be a method of Cell. I've rewritten it there as intended.

public void append(Cell other)

{

// Note: Doing it this way (the easiest and most efficient way) required changing the access of setNext and setPrev in Cell

// from private to package access. Since I'm not sure why they were made private in the first place, this seemed like a

// reasonable thing to do.

m_head.setPrev(other.getPrev());

m_tail.setNext(other);

m_tail = m_head.getPrev();

}

public Cell getHead()

{

// This is a convenience method to make it easier to test append.

return m_head;

}

}

public class Cell

{

//...

// Exercise 4

public void append(Cell other)

{

Cell otherTail = other.prev;

prev.setNext(other);

otherTail.setNext(this);

}

}

Exercise 3

this.next^length = this ^ this.prev.length = this ^ seq = [this.data..this.next^length.data)

The last bit can be written more neatly (as in the answer given on the sheet) as seq = <this.next^0.data, ..., this.next^(length-1).data>,

but they're basically the same.

Exercise 4

In that case, append splits the list into two new circular lists, with one new list being [this..other) and the other being [other..this).

A diagram of what happens is enclosed.

Exercise 5

Two possible exception-related points:

(a) Returning 0 from top() when size == 0 is not hugely cunning. It means that the results of calling top() on an empty stack and on a stack

containing 0 as its top element are the same, which they shouldn't be. Calling top() on an empty stack should throw an exception instead.

Better would be:

if(size > 0) return store[size-1];

else throw java.util.EmptyStackException();

(b) Calling pop() on an empty stack is an error, and as such it's best if the caller knows about it as soon as possible.

Better would be:

if(size > 0) --size;

else throw java.util.EmptyStackException();

Other minor suggestions to improve things (while we're at it):

(c) A better allocation strategy might be sensible (perhaps something like doubling the number of elements when it goes over the limit?). I

don't really know a great deal about it, but I remember reading something about allocation strategies in relation to C++'s std::vector class.

The rationale being that reallocations are expensive and we want to avoid them if we can.

(d) It might be worth allowing the client to reserve a certain amount of memory in advance if they're going to be pushing a known (large) number

of things onto the stack. From a design perspective, this could be seen as revealing implementation details unnecessarily, but from a pragmatic

perspective the increase in efficiency might be worth the cost (even taking into account Knuth's "premature optimisation is the root of all evil"

comment).

(e) ++size; might be more idiomatic than size=size+1; in a language with a pre-increment operator? (Delving into the murky realms of pedantry

here!)

Exercise 6

public class intSet

{

private static final int SIZE = 5;

private boolean[] m_members = new boolean[SIZE];

public boolean member(int n)

{

if(n < 0 || n >= SIZE) return false;

return m_members[n];

}

public void add(int n)

{

if(n >= 0 && n < SIZE) m_members[n] = true;

else throw new RuntimeException();

}

public void remove(int n)

{

if(n >= 0 && n < SIZE) m_members[n] = false;

else throw new RuntimeException();

}

public boolean isempty()

{

for(int i=0; i<SIZE; ++i)

{

if(m_members[i] == true) return false;

}

return true;

}

public int choose()

{

for(int i=0; i<SIZE; ++i)

{

if(m_members[i] == true) return i;

}

throw new RuntimeException();

}

public intSet() {}

}

import java.util.HashSet;

public class intSet2

{

private static final int SIZE = 5;

private Integer[] m_members = new Integer[SIZE];

private HashSet m_set = new HashSet(SIZE);
// this is total overkill, but any other implementation will do (and I wanted a

// different one from the one given in the answers)

public boolean member(int n)

{

return m_set.contains(m_members[n]);

}

public void add(int n)

{

if(n >= 0 && n < SIZE) m_set.add(m_members[n]);

else throw new RuntimeException();

}

public void remove(int n)

{

if(n >= 0 && n < SIZE) m_set.remove(m_members[n]);

else throw new RuntimeException();

}

public boolean isempty()

{

return m_set.isEmpty();

}

public int choose()

{

for(int i=0; i<SIZE; ++i)

{

if(member(i)) return i;

}

throw new RuntimeException();

}

public intSet2()

{

for(int i=0; i<SIZE; ++i) m_members[i] = new Integer(i);

}

}

There are no detectable differences between the representations using only their public methods.

Exercise 7

public class Switch

{

private int count = 0;

public void invert()

{

++count;

}

public boolean enabled()

{

return (count % 2 == 0);

}

}

I can't actually find the specifications given in the notes, which complicated matters a bit! But the reason this works as before is that

enabled() starts off returning the same value (since 0 % 2 == 0 evaluates to true), and calling invert() causes enabled() to return the

opposite value next time, since (count+1)%2 = (count%2 + 1%2)%2 = (count%2 + 1)%2 != count%2, and there are only two possible values in

arithmetic modulo 2.

There isn't any point in keeping a count as things stand, because the client can't see the count anyway.

Exercise 8

The advantage is that there are only actually two distinguishable Boolean objects (one representing each of true and false), since Boolean

is immutable, so we might as well store static references to objects representing them and then get references to them using valueOf() rather

than creating lots of equivalent objects and wasting memory. In other words, we want something like this:

class Boolean

{

private boolean m_value;

private static Boolean FALSE = new Boolean(false);

private static Boolean TRUE = new Boolean(true);

public Boolean(boolean value)

{

m_value = value;

}

public static Boolean valueOf(boolean b)

{

if(b) return TRUE;

else return FALSE;

}

//...

}

There is a corresponding advantage for the Byte wrapper class, since there are only 256 distinguishable Byte objects, but we can't use this

method for Integer, Long, Double or Float because there are just too many values to tabulate. The Byte version would look something like:

class Byte

{

private byte m_value;

private static Byte[] BYTECACHE = new Byte[256];

static

{

for(int i=0; i<256; ++i)

{

BYTECACHE[i] = new Byte(i-128);

}

}

public Byte(byte value)

{

m_value = value;

}

public static Byte valueOf(byte b)

{

return BYTECACHE[b+128];

}

//...

}

Exercise 9

No arguments

Results

FINALLY CLAUSE

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

at tryfinally.main(tryfinally.java:22)

What happened

i) r = new FileReader(args[0]); threw an ArrayIndexOutOfBoundsException (specifically the args[0] bit did)

ii) There was no appropriate catch clause, so execution transferred to the finally clause.

iii) System.err.println("FINALLY CLAUSE"); produced the output seen

iv) if(args[0].equals("fromfinally")) throw new Error("THROWN FROM FINALLY"); threw an ArrayIndexOutOfBoundsException

v) This replaced the original ArrayIndexOutOfBoundsException which was still in the process of being thrown.

 The exception output is from this second exception.

vi) There was nowhere further to which to propagate up, so the interpreter exited with an exception error.

Non-existent file

Results

blah.txt not found.

FINALLY CLAUSE

Exception in thread "main" java.lang.NullPointerException

at tryfinally.main(tryfinally.java:17)

What happened

i) r = new FileReader(args[0]); threw a FileNotFoundException (specifically FileReader's constructor did (*))

ii) There was an appropriate catch clause (namely catch(FileNotFoundException ex)) to which execution transferred.

iii) System.err.println(args[0] + " not found."); produced the first line of output seen

iv) r.close(); threw a NullPointerException

v) This NullPointerException would get propagated up after the finally clause has finished (assuming the finally clause

 terminates normally) and not handled here, even if there were a catch(NullPointerException) in this block

vi) Execution transferred to the finally clause.

vii) System.err.println("FINALLY CLAUSE"); produced the second line of output seen

viii) if(args[0].equals("fromfinally")) throw new Error("THROWN FROM FINALLY"); didn't do anything because args[0] was

 blah.txt, not fromfinally.

ix) There was nowhere to which to propagate up the NullPointerException, so the interpreter exited with an exception error.

* Although FileReader's constructor might not have been the first thing to actually throw, it may have been invoking a

 method which threw and then it merely propagated the exception up.

Argument fromfinally

Results

fromfinally not found.

FINALLY CLAUSE

Exception in thread "main" java.lang.Error: THROWN FROM FINALLY

at tryfinally.main(tryfinally.java:22)

What happened

i) r = new FileReader(args[0]); threw a FileNotFoundException as before

ii) Control transferred to the appropriate catch clause

iii) System.err.println(args[0] + " not found."); produced the first line of output seen

iv) r.close(); threw a NullPointerException

v) Execution transferred to the finally clause.

vi) System.err.println("FINALLY CLAUSE"); produced the second line of output seen

vii) The if condition evaluated to true, and throw new Error("THROWN FROM FINALLY"); was executed

viii) This error (unrecoverable exception) replaced the NullPointerException which was still in the process of being thrown.

 There was nowhere to which to propagate up the Error, so the interpreter exited with the message seen.
