Stuart Golodetz

Wednesday 2pm-3pm

Oege de Moor

Object Oriented Design

Class 4
1.

pointcut duringCommandExecution(Command c) : cflow(call(* Command.step(Object)) && target(c));

before(Command c) : call(*.new(..)) && duringCommandExecution(c) && !within(Question1)

{

System.out.println("Allocation in command " + c + " at " + thisJoinPoint.getSourceLocation());

}

2.

When proceed() is called, it returns null, so that gets "returned" from the around advice,

even though it's never actually used.

3.

If the aspect is applied to such a program, nothing extra is done, since any calls which

happen when the EventQueue is the dispatch thread are explicitly excluded. (Actually, I'm

wondering whether anything would be done even if they weren't explicitly included, since

we're capturing call joinpoints. If a call's done with the EventQueue as the dispatch thread,

it's probably being done somewhere in the libraries, which (as in question 6) won't be

recompiled and hence won't be affected by the aspect.)

So the behaviour's unaffected, but will using the aspect incur a performance penalty? Probably

yes, since we're using the dynamic pointcut if(EventQueue.isDispatchThread()), which can't be

determined at compile-time.

4.

Not obviously. Assuming that's right, it's probably because there's no real harm done in applying

the advice before a component has been realised and it would complicate the aspect to avoid it.

5.

Make the following changes:

pointcut exceptionThrowingCalls() : call(* *.*(..) throws *);

void around() : routedMethods() && voidReturnValueCalls() && !uiSyncMethodCalls && !exceptionThrowingCalls()

{

Runnable worker = new Runnable()

{

public void run()

{

proceed();

}

};

EventQueue.invokeLater(worker);

}

void around() : routedMethods() && voidReturnValueCalls() && !uiSyncMethodCalls && exceptionThrowingCalls()

{

Runnable worker = new Runnable()

{

public void run()

{

proceed();

}

};

try

{

EventQueue.invokeAndWait(worker);

}

catch(Exception ex)

{

// Do something useful.

}

}

Object around() : routedMethods() && (!voidReturnValueCalls() || uiSyncMethodCalls())

{

// As in the original.

}

The only things which were getting invoked asynchronously in the original were void return value calls,

so we just add a pointcut to distinguish those which threw exceptions from those which didn't and handle

each appropriately.

6.

That's because we couldn't use a call pointcut there. The call to RunnableWithReturn.run() happens

in the libraries, specifically somewhere within the control flow of the relevant execution of

EventQueue.invokeAndWait(..). To capture a call joinpoint, we'd need to weave code into the class

where the call happens, i.e. we'd have to recompile the libraries. This would be a dumb thing to

do, aside from being an entirely onerous business (it's probably possible, because the source code

is available on the web, I think, but it's not at all wise).

So the answer to the second part of this question is clearly no, we couldn't use a call pointcut

instead, at least not without it being seriously painful and ill-advised.

7.

The logging advice could get applied first, in which case it would print out what the original

program was doing rather than what the program advised by the thread safety aspect is doing.

We want to apply the thread safety aspect first to ensure that our logging aspect is advising

the right thing.

8.

Yes, it can be expressed using pertarget:

public aspect Question8 pertarget(fooCalls())

{

private int count = 0;

pointcut fooCalls() : call(* C.foo(..));

pointcut barCalls() : call(* C.bar(..));

before() : fooCalls()

{

++count;

}

after() : barCalls()

{

System.out.println("count = " + count);

}

}

It can be done with perthis as well:

public aspect Question8 perthis(fooExecutions())

{

private int count = 0;

pointcut fooExecutions() : execution(* C.foo(..));

pointcut barExecutions() : execution(* C.bar(..));

before() : fooExecutions()

{

++count;

}

after() : barExecutions()

{

System.out.println("count = " + count);

}

}

9.

Yes, it can, here's an example of how it would work:

import java.util.*;

public aspect Question9

{

private Map<Object,Map<Object,Object>> cache = new HashMap<Object,Map<Object,Object>>();

pointcut cachedOperation(Object nc, Object n) : call(int[] NeedsCaching.oneToN(int)) && args(n) && target(nc);

Object around(Object nc, Object n) : cachedOperation(nc, n)

{

Object ret;

Map<Object,Object> specificCache = cache.get(nc);

if(specificCache == null)

{

specificCache = new HashMap<Object,Object>();

cache.put(nc, specificCache);

}

ret = specificCache.get(n);

if(ret == null)

{

ret = proceed(nc, n);

specificCache.put(n, ret);

}

return ret;

}

}

There aren't any obvious advantages to doing this, other than making it more explicit what's going on.

On the whole, using perthis instantiation seems preferable.

10.

With percflow:

I think adding the following should do it:

after() : topLevel()

{

setCache(new java.util.HashMap());
// or setCache(null); even

}

Without percflow:

abstract aspect Tabling

{

Hashtable table;

abstract pointcut toMemo();

pointcut topLevel() : toMemo() && !cflowbelow(toMemo());

before() : topLevel()

{

table = new Hashtable();

}

after() : topLevel()

{

table = null;

}

Object around(Object n) : toMemo() && args(n)

{

// as in notes

}

}
