Stuart Golodetz

Wednesday 2pm-3pm

Oege de Moor

Object Oriented Design

Class 2 - Refactorings
2.1 Extract interface I

1.

The c1 and c4 declarations can be changed to type I, as can been seen in the following refactored code:

interface I

{

void inc();

}

class C implements I

{

int x;

public C(int x)

{

this.x = x;

}

public void inc()

{

x++;

}

public void dec()

{

x--;

}

}

class D extends C

{

public D(int x) { super(x); }

public void reset()

{

x = 0;

}

}

class Client

{

public static void main(String[] args)

{

I c1 = new C(0);

C c2 = new C(0);
// can't change to I because call c2.dec() later

C c3 = new C(0);
// can't change to I because have c2 = c3 later -> [c3] <= [c2] = C

I c4 = new D(0);

c1.inc();

c1.inc();

c2.dec();

c3.inc(); c2 = c3;

c4 = c1; c4.inc(); ((D)c4).reset();
// this last statement is an error, since c4 now refers to a C rather than a D, but it compiles fine

}

}

2.

The call c2.dec() generates the constraint:

[c2] <= Decl(M) where rootDefs(dec) = {M} (in general, a rootDefs set might contain more than one member, but here it doesn't)

So [c2] <= C

Thus we can't change the declaration of c2 so that it has type I, since it's not true that I <= C.

The assignment c2 = c3 generates the constraint:

[c3] <= [c2]

Since <= is transitive, we have that [c3] <= C, so we can't change the declaration of c3 so that it has type I either.

2.2 Extract interface II

1.

I'm either being dense or this should read "...the steps of the extract *interface* refactoring..." Either way, I can't see any

extract method refactoring of which to give details, so I'm just going to give details of the extract interface one instead!

* Create an interface I with method g and make A implement it:

interface I

{

void g();

}

public class A implements I

{

//...

}

* Find all instances of A and see if they can be changed to I, noting all the relevant type constraints:

Due to the call x1.g():

[x1] <= Decl(M) where rootDefs(g) = {M} (in general, a rootDefs set might contain more than one member, but here it doesn't)

So [x1] <= I

Due to x1 being returned from f1:

[x1] <= [f1]

So there's nothing stopping us changing either the type of x1 or the return type of f1 to I.

Due to the calls x3.g():

[x3] <= I (similar to the above)

Due to x3 being returned from f3:

[x3] <= [f3]

Again, nothing's stopping us changing both of these to I.

This completes the mechanised refactoring, giving us:

interface I

{

void g();

}

public class A implements I

{

int n = 0;

I f1(I x1) { x1.g(); return x1; }

public void g() { n++; }

}

class B extends A

{

B f2(B x2) { x2.g(); x2.g(); return x2; }

I f3(I x3) { x3.g(); x3.g(); x3.g(); return x3; }

}

It's not the best possible solution, since there's nothing stopping us changing B.f2 to:

I f2(I x2) { x2.g(); x2.g(); return x2; }

The mechanised solution doesn't find this because it's only looking for instances of A to update, not its subclasses like B as well.

2.

The relevant bit is section (e) in CanPullUp(P,M), which reads:

for all C <= super(DeclP(M)):

staticLookup(P,C,Sig(M)) <P super(DeclP(M))

What this says is that you can only pull a method up to a superclass if no descendant classes of the superclass

are inheriting their method with signature Sig(M) from the superclass or higher in the class hierarchy.

{Example}

class A

{

void f() { System.out.println("A.f()"); }

void g() { System.out.println("A.g()"); }

}

class B extends A {}

class C extends B

{

void g() { System.out.println("C.g()"); }

}

class D extends B

{

void f() { System.out.println("D.f()"); }

void g() { System.out.println("D.g()"); }

}

In this example, it wouldn't be safe to pull up D.f() to class B. Consider the following:

A c = new C();

c.f();

// currently A.f() is invoked

Suppose we made the change:

class B extends A

{

void f() { System.out.println("D.f()"); }

}

class D extends B

{

void g() { System.out.println("D.g()"); }

}

Then the above code would invoke B.f() instead of A.f() and print "D.f()" - the program behaviour would change. The formalism

takes account of this, since staticLookup(P,C,Sig(D.f())) = A, which isn't <P super(DeclP(D.f())) = B.

On the other hand, it would be safe to pull up C.g() (or, for that matter, D.g()) to class B, since:

staticLookup(P,C,Sig(C.g())) = C <P super(DeclP(C.g())) = super(C) = B

staticLookup(P,D,Sig(C.g())) = D <P super(DeclP(C.g())) = super(C) = B

{End Example}

With the code given, CList.toString() can't be pulled up because staticLookup(P2,FList,Sig(CList.toString())) = Object which

isn't <P2 super(DeclP2(CList.toString())) = super(CList) = List.

2.3 Practical assignment

I wasn't entirely sure whether you really wanted my entire codebase from the previous questions, it's some 1330 lines of code

and would have taken up rather a lot of paper. As a compromise solution, I've uploaded the full source to:

http://compsci.gxstudios.net/ants271005.jar

Just use "jar xf ants271005.jar" to extract everything to the right place. Hope that's ok?

1.

(i) Implementing the rules of combat between ants

I updated the MoveInstruction class in AntBrain as follows:

private static class MoveInstruction implements IAntInstruction

{

private int m_st1, m_st2;

public MoveInstruction(int st1, int st2)

{

m_st1 = st1;

m_st2 = st2;

}

/** ADDED ALL OF THIS... **/

private int adjacent_ants(Cell[][] cells, Location loc, Colour colour)

{

int count = 0;

for(int direction = 0; direction<6; ++direction)

{

Location adjLoc = loc.adjacent(direction);

Cell adjCell = cells[adjLoc.i][adjLoc.j];

Ant adjAnt = adjCell.get_ant();

if(adjAnt != null && adjAnt.get_colour() == colour) ++count;

}

return count;

}

private void check_for_surrounded_ant_at(Cell[][] cells, Location loc)

{

Cell c = cells[loc.i][loc.j];

Ant ant = c.get_ant();

if(ant != null && adjacent_ants(cells, loc, ant.get_colour().other()) >= 5)

{

ant.set_alive(false);

c.set_ant(null);

c.set_food_count(c.food_count() + 3);

if(ant.has_food()) c.set_food_count(c.food_count() + 1);

}

}

private void check_for_surrounded_ants(Cell[][] cells, Location loc)

{

check_for_surrounded_ant_at(cells, loc);

for(int direction = 0; direction<6; ++direction)

{

check_for_surrounded_ant_at(cells, loc.adjacent(direction));

}

}

/** ...DOWN TO HERE **/

public void execute(Cell[][] cells, Ant ant)

{

Location loc = ant.get_location();

Location dest = loc.adjacent(ant.get_direction());

Cell c = cells[loc.i][loc.j];

Cell destCell = cells[dest.i][dest.j];

if(destCell.is_rocky() || destCell.get_ant() != null)

{

ant.set_state(m_st2);

}

else

{

c.set_ant(null);

destCell.set_ant(ant);

ant.set_state(m_st1);

ant.set_location(dest);

ant.set_resting(14);

check_for_surrounded_ants(cells, dest);

// ADDED THIS

}

}

}

(ii) Implementing the ant resting behaviour

As can be seen in the above code, I've added ant.set_resting(14); when an ant moves. I also had to change World.step as follows:

public void step()

{

for(Ant ant: m_ants)

{

if(!ant.is_alive()) continue;

// skip dead ants

/** ADDED THIS BIT **/

if(ant.get_resting() > 0)

{

ant.set_resting(ant.get_resting() - 1);

}

else

{

get_brain(ant).run_instruction(m_cells, ant);

}

}

m_listener.world_changed();

}

And I had to change the Ant class slightly to include a resting field:

public class Ant

{

// <snip>

private int m_resting = 0;

// <snip>

public int get_resting()

{

return m_resting;

}

// <snip>

public void set_resting(int resting)

{

m_resting = resting;

}

// <snip>

public String toString()

{

StringBuffer sb = new StringBuffer();

switch(m_colour)

{

case BLACK:

sb.append("black ant of ");

break;

case RED:

sb.append("red ant of ");

break;

}

sb.append("id " + m_id + ", ");

sb.append("dir " + m_direction + ", ");

sb.append("food " + (m_hasFood ? "1" : "0") + ", ");

sb.append("state " + m_state + ", ");

sb.append("resting " + m_resting);
// ADDED THIS

return sb.toString();

}

}

Of course, in practice this is slightly artificial, because I added the resting code right at the start because it was almost harder not to.

2.

(i)

Dumping the world after each round is handled in the TextView class:

public class TextView implements IListener

{

private int m_round = 0;

private World m_world;

public TextView(World world)

{

m_world = world;

}

public void world_changed()

{

System.out.println("After round " + m_round++ + "...");

int height = m_world.get_height(), width = m_world.get_width();

Cell[][] cells = m_world.get_cells();

for(int j=0; j<height; ++j)

{

for(int i=0; i<width; ++i)

{

System.out.print("cell (" + i + ", " + j + "): ");

System.out.print(cells[i][j]);

System.out.println();

}

}

System.out.println();

}

}

I had to introduce "new" code, if you can call it that, in the views package. As it happens, I put this in at the start

so that I could see what was going on. I had to add the IListener interface to the helpers package and put some connecting

code in the model to allow a view to listen in and to inform it when the model changed.

(ii)

Tracing the movements of individual ants is handled in the TraceView class:

public class TraceView implements IListener

{

private int m_round = 0;

private World m_world;

public TraceView(World world)

{

m_world = world;

}

private void check_invariants()

{

// Check that each ant thinks it's in the cell it's actually in.

int height = m_world.get_height(), width = m_world.get_width();

Cell[][] cells = m_world.get_cells();

for(int j=0; j<height; ++j)

{

for(int i=0; i<width; ++i)

{

Cell c = cells[i][j];

Ant a = c.get_ant();

if(a != null)

{

if(i != a.get_location().i || j != a.get_location().j)

throw new Error("Ant " + a.get_id() + " is in square (" + i + "," + j + ") but thinks it's in (" + a.get_location().i + "," + a.get_location().j + ") - OOPS!");

}

}

}

// Check that no ant is in a rocky square.

for(Ant a: m_world.get_ants())

{

Location loc = a.get_location();

if(cells[loc.i][loc.j].is_rocky()) throw new Error("Ant " + a.get_id() + " is on rocky square (" + loc.i + "," + loc.j + ")");

}

// Check that any ant that is in a cell is still alive.

for(int j=0; j<height; ++j)

{

for(int i=0; i<width; ++i)

{

Cell c = cells[i][j];

Ant a = c.get_ant();

if(a != null && !a.is_alive()) throw new Error("Ant " + a.get_id() + " in cell (" + i + "," + j + ") is dead");

}

}

}

public void world_changed()

{

System.out.println("After round " + m_round++ + "...");

for(Ant a: m_world.get_ants())

{

AntBrain ab = m_world.get_brain(a);

System.out.println(ab.get_instruction_string(a.get_state()));

System.out.println("\t" + a);

}

System.out.println();

check_invariants();

}

}

I had to introduce new code in the views package but nowhere else (aside from changing the code in Main to use a different view).

I'm checking the following invariants:

* Each ant thinks it's in the cell it's actually in.

* No ant is in a rocky square.

* Any ant that is in a cell is still alive.

I could check other things as well, but having run it for 1000 rounds with identical output to that from the website, I'm fairly

sure it works ok. (It actually worked before I added this trace code, since I wrote some temporary debugging code to get it

working before I wrote the "formal" tracing code above, so in a sense the above code is somewhat artificial again.)
