Stuart Golodetz

Wednesday 2pm-3pm slot (hopefully…I’m getting it changed from the 3pm slot because I have a logic lecture then) – failing which, it’s the Wednesday 3pm-4pm slot

Object Oriented Design

Class 1
1.

// Find a class ?C

class(?C),

// Which has a member ?M

child(?C,?M),

// Where ?M is a public static method called main

method(?M), name(?M,main), modifier(?M,public), modifier(?M,static)

Order of variables: ?C, ?M

2.

// Find a class ?C which extends EnterpriseBean

class(?C), extends(?C,?S), name(?S,EnterpriseBean),

// And has a method ?ourMethod which calls a ?calleeMethod

method(?C,?ourMethod), calls(?ourMethod,?calleeMethod,?),

// In a ?calleeClass which derives from an ?ancestor

method(?calleeClass,?calleeMethod), subtype*(?ancestor,?calleeClass),

// In the java.awt package

package(?ancestor,?P), name(?P,java.awt)

Order of variables: ?C, ?ourMethod, ?calleeMethod, ?calleeClass

Note that the name thing at the end (i.e. using "java.awt") is a little bit dodgy. When I tested it, I used one of my own package names and simply replaced that with java.awt in the final result, so it may not be quite right. I'm not sure exactly how to sort it out though if not.

3.

// Find a class ?C

class(?C),

// Which extends EnterpriseBean

extends(?C,?S), name(?S,EnterpriseBean),

// And has a static, non-final field ?F

child(?C,?F), field(?F), modifier(?F,static), NOT(modifier(?F,final))

Order of variables: ?C, ?F

4.

I've listed my various attempts at this, my actual answer is the last one but I wanted to keep a record of how I got there.

Attempt #1 (doesn't work):

class(?C), NOT(EXISTS ?M : child(?C,?M), method(?M), name(?M,reset)), field(?F), child(?C,?F); class(?C), NOT(EXISTS ?M : child(?C,?M), method(?M), name(?M,reset), calls(?,?M,?)), field(?F), child(?C,?F)

Attempt #2 (doesn't work):

class(?C), (NOT(EXISTS ?M : child(?C,?M), method(?M), name(?M,reset)); NOT(EXISTS ?M : child(?C,?M), method(?M), name(?M,reset), calls(?,?M,?)), child(?C,?F), field(?F))

Attempt #3 (almost):

class(?C), field(?F), child(?C,?F), (NOT(EXISTS ?M : child(?C,?M), method(?M), name(?M,reset)); NOT(EXISTS ?M : child(?C,?M), method(?), name(?M,reset), calls(?,?M,?)))

Attempt #4 (best attempt):

// Find any class ?C which has a static field ?F

class(?C), field(?F), child(?C,?F), modifier(?F,static),

// And is such that either it has no reset method

(NOT(EXISTS ?M : child(?C,?M), method(?M), name(?M,reset));

// Or such that its reset method never gets called

NOT(EXISTS ?M : child(?C,?M), method(?), name(?M,reset), calls(?,?M,?)))

This does what I've described, but whether it does what was wanted is a different matter, I wasn't entirely clear what was being looked for here.

Order of variables: ?C, ?F

5.

// Let ?nodeType be the type for Node, then

name(?nodeType,Node),

// Find a class ?C which is a subtype of Node

class(?C), subtype*(?nodeType,?C),

// And has a field whose type is either a subtype of Node, or a List

field(?F), child(?C,?F), type(?F, ?fieldType), (subtype*(?nodeType,?fieldType); name(?fieldType,List))

Order of variables: ?C, ?F, ?fieldType

6.

// Find an element ?C of a package ?P

package(?C,?P),

// Which is a class

class(?C),

// Which has a member ?M

child(?C,?M),

// Where ?M is a method with a parameter of type Context

method(?M), param(?M,?T,?), name(?T,Context)

And we select the variables in the order ?P, ?C, ?M to give us our hierarchy.

[Note]

If we further wanted to specify that it was a particular Context interface we were talking about (this currently finds parameters of any type called Context), we could do something like this - suppose we only want the type blah.Context, we could add the following to the end of the query:

, package(?T,?Q), name(?Q,blah)
