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1. (a) By Gershgorin’s Theorem, the eigenvalues of the matrix lie in the discs:

D1 = {z ∈ C | |9− z| ≤ 1}
D2 = {z ∈ C | |4− z| ≤ 1 + ε}
D3 = {z ∈ C | |1− z| ≤ ε}

Since |ε| < 1, the discs are mutually disjoint (consider that (i) the smallest thing in D1 is
7 and the largest in D2 is strictly less than 6 and (ii) the smallest thing in D2 is strictly
greater than 2 and the largest in D3 is strictly less than 2). So by Gershgorin’s Second
Theorem there is exactly one eigenvalue in each disc. The best estimates I can come up
with for the eigenvalues are hence 9, 4 and 1, the points in the middles of the three discs.

(b) Consider the diagonal similarity transformation: 1
1

ε


︸ ︷︷ ︸

P−1

 9 1 0
1 4 ε
0 ε 1

 1
1

1
ε


︸ ︷︷ ︸

P

=

 9 1 0
1 4 ε
0 ε2 ε

 1
1

1
ε


=

 9 1 0
1 4 1
0 ε2 1


︸ ︷︷ ︸

A′

Now the eigenvalues of A′ are the same as those of A, since the two matrices are similar.
In particular, we now have that |λ3 − 1| ≤ ε2, since the Gershgorin disc for the third row
of A′ is {z ∈ C | |1− z| ≤ ε2}.

2. An example would be [
1 10

0.1 2

]
the eigenvalues of which are roughly 0.3820 and 2.6180 (calculated using MATLAB). Both of
these are clearly in the first disc (of size 10, centred on 1) and neither of them is in the second
disc (of size 0.1, centred on 2).

3. (a) By Gershgorin’s Theorem, the eigenvalues of the matrix lie in the discs:

D1 = {z ∈ C | | − 2− z| ≤ 1 + 0 + 1} = {z ∈ C | | − 2− z| ≤ 2}
D2 = {z ∈ C | | − 1− z| ≤ 2 + 1 + 0} = {z ∈ C | | − 1− z| ≤ 3}
D3 = {z ∈ C | |9− z| ≤ 1 + 0 + 1} = {z ∈ C | |9− z| ≤ 2}
D4 = {z ∈ C | |1− z| ≤ 2 + 0 + 1} = {z ∈ C | |1− z| ≤ 3}

By Gershgorin’s Second Theorem, since D3 is disconnected from the other discs, it con-
tains exactly 1 eigenvalue, i.e. λ1 since that’s the largest eigenvalue. The smallest λ1 can
be is hence 9− 2 = 7.
What about λ2? Well, it can’t be in D3, so it must be in one of the other discs. The largest
it can possibly be is 4, supposing it was in D4 and as big as possible. So a lower bound
for |λ1|

|λ2| is 7
4
.
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(b) After iteration k of the Power Method, we have Akx = λk
1

[
α1v1 +

∑n
i=2 αi

(
λi

λ1

)k

vi

]
.

Now, given that α1 = ... = αn = α for some α, we can rewrite this as:

λk
1α

[
v1 +

n∑
i=2

(
λi

λ1

)k

vi

]

We want to find the smallest k s.t. the term in the direction of v1 is guaranteed to be at
least 104 times bigger than the sum of the terms in the other eigenvalue directions, i.e. we
want to solve:

λk
1α ≥ 104λk

1α
∑n

i=2

(
λi

λ1

)k

⇔ 1 ≥ 104
∑n

i=2

(
λi

λ1

)k

⇔ 10−4 ≥
∑n

i=2

(
λi

λ1

)k

Now we know that λ2

λ1
is at most 4

7
and that λi ≤ λ2 for all i ≥ 2, so in particular we know

that
∑n

i=2

(
λi

λ1

)k

≤ (n− 1)
(

4
7

)k. Now n = 4 here, so we know that:

n∑
i=2

(
λi

λ1

)k

≤ 3

(
4

7

)k

We want therefore that:

3
(

4
7

)k ≤ 10−4

⇔ log 3 + k log 4
7
≤ log 10−4 = −4

⇔ k ≥
⌈
−4−log 3

log 4
7

⌉
= 19

So we need at least 19 iterations of the Power Method to guarantee our result.
(c) EDU>> A = [-2,1,0,1; 2,-1,-1,0; 1,0,9,-1; 2,0,-1,1]

A =

-2 1 0 1
2 -1 -1 0
1 0 9 -1
2 0 -1 1

EDU>> x=randn(4,1),x=x/sqrt(x’*x)

x =

-0.4326
-1.6656
0.1253
0.2877

x =

-0.2473
-0.9522
0.0717
0.1645

EDU>> y=A*x;x=y/sqrt(y’*y)

x =
2



-0.4367
0.5749
0.3472
-0.5985

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

0.2000
-0.4225
0.7735
-0.4281

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.1617
0.0063
0.9814
-0.1037

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

0.0252
-0.1459
0.9765
-0.1567

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0389
-0.0860
0.9884
-0.1193

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0140
-0.1076
0.9855
-0.1302

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0230
-0.0995
0.9868
-0.1256

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0197
-0.1025
0.9864
-0.1272

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0209
-0.1014
0.9865
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-0.1266

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0204
-0.1018
0.9865
-0.1268

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0206
-0.1016
0.9865
-0.1267

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0205
-0.1017
0.9865
-0.1268

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0206
-0.1017
0.9865
-0.1267

EDU>> y=A*x;x=y/sqrt(y’*y)

x =

-0.0206
-0.1017
0.9865
-0.1267

EDU>> y(3)/x(3)

ans =

9.1076

EDU>> eig(A)

ans =

9.1076
-3.3765
1.5950
-0.3262

Looking at the eigenvalues of A, we can see that the calculated value (9.1076) is correct.

4. (a) If we apply the Power Method with the matrix B = A−1, we compute a set of unit vectors
in the directions x, Bx, B2x, ..., Bkx, i.e. x, A−1x, (A−1)2x, ..., (A−1)kx. Now, we
observe that if A has a basis of eigenvectors with corresponding eigenvalues λ1, ..., λn

then so does A−1, specifically ones with corresponding eigenvalues 1
λi

for i ∈ {1, ..., n}.

(If this isn’t obvious, consider the solutions of A−1w = µw: by noting that if Avi = λivi

then A−1(Avi) = vi = µi(λivi), we can see that each µi = 1
λi

, hence the observation
above.)
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Denote the basis of (normalised) eigenvectors for A−1 as wi for i ∈ {1, ..., n}.
(Hence ∀i · ||wi|| = 1.) We can write (for some βi):

x =
n∑

i=1

βiwi

where A−1wi = µiwi. We also assume that µ1 > µ2 ≥ ... ≥ µn, i.e. there is some largest
eigenvalue µ1 of A−1 and hence some smallest eigenvalue 1

µ1
= λ1 of A. So:

(A−1)kx = (A−1)k

n∑
i=1

βiwi =
n∑

i=1

βi(A
−1)kwi =

n∑
i=1

βiµ
k
i wi

And rewriting similarly to the lecture notes:

(A−1)kx = µk
1

β1w1 +
n∑

i=2

βi

(
µi

µ1

)k

wi︸ ︷︷ ︸
→0 as k→∞


So (A−1)kx tends to look like µk

1β1w1 as k gets large. So as per the lecture notes we have
that:

||(A−1)kx||
||(A−1)k−1x||

≈ |µk
1β1|

|µk−1
1 β1|

→ |µ1| =
1

λ1

as k →∞

In other words, we converge to the reciprocal of λ1, which as noted before is A’s smallest
eigenvalue (in terms of absolute value) in this instance.

(b) TODO

(c) Each time we’re doing the computation y = A−1x in the loop. Note that we don’t need
to compute A−1 to do this if we rewrite as Ay = x, LU factorise A to give LUy = x and
then solve for y as normal using forward and back substitution.

5. (a) First consider the eigenvalues of A− µI . We observe that if Av = λv then (A− µI)v =
Av−µv = λv−µv = (λ−µ)v, i.e. for each eigenvalue λ of A, λ−µ is an eigenvalue of
A − µI . Now, if µ is an approximation to an eigenvalue λk of A s.t. |λk − µ| ≤ |λi − µ|
for all i 6= k, then λk − µ is the smallest eigenvalue of A− µI . We know from question 4
that applying the Power Method to the inverse of a matrix B allows us to find the inverse
of the smallest eigenvalue of B, so in this case applying the Power Method to (A− µI)−1

allows us to find the inverse of the smallest eigenvalue of A− µI , in other words it allows
us to find 1

λk−µ
= γ. It’s now easy to see that λk = µ + 1

γ
, as the question pointed out.

This, then, is the value of this method: instead of only allowing us to find the largest (or
smallest) eigenvalue of A, this method allows us to find any eigenvalue of A provided we
have an approximation to it that is closer to it than to any other eigenvalue of A (i.e. the
solution converges to the eigenvalue nearest to our original approximation µ).

(b) TODO

6. (a) We calculate as follows:
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J(1, n)J(1, n− 1) · · · J(1, 2)AJ(1, 2)T

=


α m12 · · · m1n

0 m22 · · · m2n
...

...
...

0 mn2 · · · mnn




cos θ − sin θ
sin θ cos θ

1
. . .

1



=


α cos θ + m12 sin θ −α sin θ + m12 cos θ m13 · · · m1n

m22 sin θ m22 cos θ m23 · · · m2n
...

...
...

...
mn2 sin θ mn2 cos θ mn3 · · · mnn


Well, the rightmost n − 2 columns of this are certainly non-zero in general, since they’re
just the rightmost n − 2 columns of the matrix J(1, n)J(1, n − 1) · · · J(1, 2)A, whose
entries are non-zero in general.
What about the other entries? Well, consider an entry mk2 sin θ: this is zero iff either
mk2 = 0 or sin θ = 0. Neither of these is zero in general. The same goes for mk2 cos θ.
The only remaining entries are α cos θ + m12 sin θ and −α sin θ + m12 cos θ. Neither of
these are zero in general.

(b) Consider for example:


α × · · · ×
β × · · · ×
0 × · · · ×
...

...
...

0 × · · · ×





1
cos θ − sin θ
sin θ cos θ

1
. . .

1


︸ ︷︷ ︸

J(2,3)T

=


α × · · · ×
β × · · · ×
0 × · · · ×
...

...
...

0 × · · · ×



Since the first column of any of the relevant J(2, k)T matrices is just (1, 0, ..., 0)T , the
first column of the original matrix gets retained (we don’t care at this stage what happens
to the other columns). We can postmultiply by however many of them we like and the
first column won’t change. Thus the zeros in the first column don’t get destroyed by the
postmultiplications.
(Note: I got a bit confused by the comment about notation here, any chance of briefly
explaining it in a sentence?!)

(c) The obvious way is just to observe that the matrix we get is equal to its transpose and
hence symmetric (so if we get (α, β, 0, ..., 0)T as our first column, we get (α, β, 0, ..., 0)
as our first row). Using the fact that (AB)T = BT AT , we just write:

[J(2, n) · · · J(2, 3)AJ(2, 3)T · · · J(2, n)T ]T

= (J(2, n)T )T · · · (J(2, 3)T )T AT J(2, 3)T · · · J(2, n)T

= J(2, n) · · · J(2, 3)AJ(2, 3)T · · · J(2, n)T (note that AT = A)

7. TODO

8. It suffices to show that Ak = QkRk + µkI is similar to Ak+1 = RkQk + µkI . Well:
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Ak+1 = RkQk + µkI = QT
k Qk(RkQk + µkI) = QT

k (Ak − µkI)Qk + QT
k µkIQk = Q−1

k AkQk

So Ak+1 is similar to Ak and we’re done. Note that, as required, this really doesn’t depend on
the various µk values.

9. EDU>> A=randn(6,6), A=A+A’

A =

-0.4326 1.1892 -0.5883 -0.0956 -0.6918 -0.3999
-1.6656 -0.0376 2.1832 -0.8323 0.8580 0.6900
0.1253 0.3273 -0.1364 0.2944 1.2540 0.8156
0.2877 0.1746 0.1139 -1.3362 -1.5937 0.7119
-1.1465 -0.1867 1.0668 0.7143 -1.4410 1.2902
1.1909 0.7258 0.0593 1.6236 0.5711 0.6686

A =

-0.8651 -0.4764 -0.4630 0.1920 -1.8382 0.7910
-0.4764 -0.0753 2.5105 -0.6577 0.6713 1.4158
-0.4630 2.5105 -0.2728 0.4083 2.3208 0.8749
0.1920 -0.6577 0.4083 -2.6724 -0.8794 2.3355
-1.8382 0.6713 2.3208 -0.8794 -2.8819 1.8614
0.7910 1.4158 0.8749 2.3355 1.8614 1.3372

EDU>> B=hess(A)

B =

-2.2139 0.7059 0 0 0 0
0.7059 -1.3250 0.9839 0 0 0

0 0.9839 -1.3365 2.4416 0 0
0 0 2.4416 0.1286 -3.4362 0
0 0 0 -3.4362 -2.0207 -3.5093
0 0 0 0 -3.5093 1.3372

EDU>> eig(A)

ans =

-6.0874
-2.9672
-2.2485
-0.6883
1.7775
4.7835

EDU>> eig(B)

ans =

-6.0874
-2.9672
-2.2485
-0.6883
1.7775
4.7835

EDU>> [Q,R] = qr(B)

Q =

-0.9527 -0.2215 -0.0281 -0.0948 -0.0653 -0.1708
0.3038 -0.6946 -0.0881 -0.2973 -0.2049 -0.5358

0 0.6845 -0.0985 -0.3324 -0.2291 -0.5990
0 0 0.9908 -0.0621 -0.0428 -0.1120
0 0 0 0.8878 -0.1644 -0.4298
0 0 0 0 -0.9340 0.3572

R =
7



2.3237 -1.0751 0.2989 0 0 0
0 1.4374 -1.5982 1.6712 0 0
0 0 2.4642 -0.1130 -3.4048 0
0 0 0 -3.8704 -1.5805 -3.1156
0 0 0 0 3.7571 -0.6722
0 0 0 0 0 1.9860

EDU>> R*Q

ans =

-2.5405 0.4367 0.0000 0.0000 0.0000 0.0000
0.4367 -2.0923 1.6866 -0.0000 0 0.0000

0 1.6866 -0.3546 -3.8350 0 -0.0000
0 0 -3.8350 -1.1626 3.3356 0.0000
0 0 0 3.3356 0.0103 -1.8550
0 0 0 0 -1.8550 0.7093

We note that as expected A and B have the same eigenvalues, that R has (as per question 7)
two non-zero super diagonals and that RQ is tridiagonal (using the notation from lectures, if
Ak = B = QR then Ak+1 = RQ is still tridiagonal).

10. EDU>> n=6, A=randn(n,n), A=A+A’, B=hess(A)

n =

6

A =

-0.4326 1.1892 -0.5883 -0.0956 -0.6918 -0.3999
-1.6656 -0.0376 2.1832 -0.8323 0.8580 0.6900
0.1253 0.3273 -0.1364 0.2944 1.2540 0.8156
0.2877 0.1746 0.1139 -1.3362 -1.5937 0.7119
-1.1465 -0.1867 1.0668 0.7143 -1.4410 1.2902
1.1909 0.7258 0.0593 1.6236 0.5711 0.6686

A =

-0.8651 -0.4764 -0.4630 0.1920 -1.8382 0.7910
-0.4764 -0.0753 2.5105 -0.6577 0.6713 1.4158
-0.4630 2.5105 -0.2728 0.4083 2.3208 0.8749
0.1920 -0.6577 0.4083 -2.6724 -0.8794 2.3355
-1.8382 0.6713 2.3208 -0.8794 -2.8819 1.8614
0.7910 1.4158 0.8749 2.3355 1.8614 1.3372

B =

-2.2139 0.7059 0 0 0 0
0.7059 -1.3250 0.9839 0 0 0

0 0.9839 -1.3365 2.4416 0 0
0 0 2.4416 0.1286 -3.4362 0
0 0 0 -3.4362 -2.0207 -3.5093
0 0 0 0 -3.5093 1.3372

EDU>> while n > 1,...
while abs(B(n-1,n))>1.e-5,...
[Q,R]=qr(B-B(n,n)*eye(n));...
B=R*Q+B(n,n)*eye(n),...
end,lambda=B(n,n),...
n=n-1, B=B(1:n,1:n),...
end

B =

-2.4501 0.5190 0 -0.0000 0 -0.0000
0.5190 -1.7855 1.1970 0 0.0000 0.0000

0 1.1970 -2.4505 -2.6811 -0.0000 0.0000
0 0 -2.6811 -0.6336 4.4903 0
0 0 0 4.4903 0.1045 -0.5156
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0 0 0 0 -0.5156 1.7848

B =

-2.5656 0.4477 -0.0000 0.0000 -0.0000 0.0000
0.4477 -2.4832 1.4646 -0.0000 -0.0000 -0.0000

0 1.4646 -3.7071 -2.6855 0.0000 -0.0000
0 0 -2.6855 -0.5739 -3.4520 -0.0000
0 0 0 -3.4520 2.1220 -0.0011
0 0 0 0 -0.0011 1.7775

B =

-2.6561 0.4554 -0.0000 0.0000 -0.0000 -0.0000
0.4554 -3.4430 1.7845 -0.0000 0.0000 0.0000

0 1.7845 -4.3286 -1.7569 -0.0000 0.0000
0 0 -1.7569 0.7788 2.9245 -0.0000
0 0 0 2.9245 2.4409 -0.0000
0 0 0 0 -0.0000 1.7775

lambda =

1.7775

n =

5

B =

-2.6561 0.4554 -0.0000 0.0000 -0.0000
0.4554 -3.4430 1.7845 -0.0000 0.0000

0 1.7845 -4.3286 -1.7569 -0.0000
0 0 -1.7569 0.7788 2.9245
0 0 0 2.9245 2.4409

B =

-2.7430 0.5417 -0.0000 0.0000 -0.0000
0.5417 -4.4359 1.8190 -0.0000 0.0000

0 1.8190 -3.8381 -0.8865 0.0000
0 0 -0.8865 0.4324 2.4469
0 0 0 2.4469 3.3768

B =

-2.8514 0.7006 -0.0000 0.0000 -0.0000
0.7006 -5.1094 1.5264 -0.0000 0.0000

0 1.5264 -3.2219 -0.4948 -0.0000
0 0 -0.4948 -0.6033 1.0486
0 0 0 1.0486 4.5782

B =

-3.0022 0.9107 -0.0000 0.0000 0.0000
0.9107 -5.3879 1.1771 -0.0000 -0.0000

0 1.1771 -2.8475 -0.3468 0.0000
0 0 -0.3468 -0.7534 0.0418
0 0 0 0.0418 4.7832

B =

-3.2446 1.1694 -0.0000 0.0000 -0.0000
1.1694 -5.3857 0.8712 -0.0000 0.0000

0 0.8712 -2.6354 -0.2568 -0.0000
0 0 -0.2568 -0.7257 0.0000
0 0 0 0.0000 4.7835
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lambda =

4.7835

n =

4

B =

-3.2446 1.1694 -0.0000 0.0000
1.1694 -5.3857 0.8712 -0.0000

0 0.8712 -2.6354 -0.2568
0 0 -0.2568 -0.7257

B =

-4.5175 1.6147 -0.0000 -0.0000
1.6147 -4.3862 0.3862 0.0000

0 0.3862 -2.3993 -0.0057
0 0 -0.0057 -0.6883

B =

-5.6539 1.0905 -0.0000 0.0000
1.0905 -3.3307 0.2265 -0.0000

0 0.2265 -2.3184 -0.0000
0 0 -0.0000 -0.6883

lambda =

-0.6883

n =

3

B =

-5.6539 1.0905 -0.0000
1.0905 -3.3307 0.2265

0 0.2265 -2.3184

B =

-6.0737 0.2061 0.0000
0.2061 -2.9800 0.0251

0 0.0251 -2.2494

B =

-6.0869 0.0387 -0.0000
0.0387 -2.9676 0.0000

0 0.0000 -2.2485

B =

-6.0874 0.0072 0.0000
0.0072 -2.9672 0.0000

0 0.0000 -2.2485

lambda =
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-2.2485

n =

2

B =

-6.0874 0.0072
0.0072 -2.9672

B =

-6.0874 0.0000
0.0000 -2.9672

lambda =

-2.9672

n =

1

B =

-6.0874

EDU>> eig(A)

ans =

-6.0874
-2.9672
-2.2485
-0.6883
1.7775
4.7835

We note that each of the eigenvalues of A (and hence B, since they’re similar matrices) appears
during this calculation (except for the final one which we get from the only entry of the clipped-
down B matrix). Rather than copying and pasting, I’ve implemented the whole thing as a loop
which does exactly the same thing (but involves slightly less effort on the part of the user (me!))
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