Stuart Golodetz













FAO: Dr. Geraint Jones

Networks and Operating Systems

Tutorial 4
Question 1
Suppose that some user process takes time p to produce each output, that

the total overhead of calling the output routine is w and that the output

device takes a time c to consume each output.

How much greater a throughput would the output system have if the producer

buffered n items of output before each call of the output routine.

How much greater throughput would the output system have if it were

double-buffered? (Double-buffering allows the producer to write to one buffer

at the same time as the consumer is emptying another.)

What would happen to the throughput with a third buffer? Is there any

purpose to triple-buffering?

Answer:

(i)

Time taken to output n items one at a time:

n(p + w + c)

Time taken to buffer n items and output them all at once:

n(p + c) + w

(assuming that when it says "the output device takes a time c to consume

each output", the buffered items get treated as individual outputs by

the output device, even though they've been sent all at once - if they're

treated as a single output, the time becomes np + w + c)

In terms of greater throughput, you're getting a rate of

n/(n(p + c) + w) per time unit

instead of

n/(n(p + w + c)) = 1/(p + w + c) per time unit

(ii)

With double-buffering:

Initially, the producer takes time p+w to produce an output and pass it

to the output device. For time c after that, it's working on producing

the next output while the output device is getting on with consuming

the first output.

Suppose p+w <= c. Then aside from for the very first output, the output

is being produced while the output device is consuming the old output,

meaning that it's not taking up any extra time. The total time to

output n items (where n > 1) is thus:

(p+w) + cn

Suppose, on the other hand, that p+w > c. In this case, it's the work

done by the output device that we're essentially getting for free. The

total time to output n items in this case is thus:

n(p+w) + c

on the basis that we have to generate n items of output, and the output

device can't begin consuming the last item until we've finished generating

it.

Note: When p+w = c, it actually doesn't matter which of the two cases we

use to work out how long it takes (I've arbitrarily chosen to put it in

the first case), since:

(p+w) + cn = c + cn = c(n+1)

n(p+w) + c = nc + c = c(n+1)

Note that this is also the optimum situation, since if either p+w or c is

greater than the other, the time needed increases. This is intuitively

obvious, because if either the producer or consumer is running faster than

the other, one of them will have to wait at some point. It's a very similar

sort of issue to rate-based flow control in the networks stuff we were

doing.

In terms of greater throughput, you're getting a rate of

n/(n(max{p+w,c}) + min{p+w,c}) per time unit

This has the advantage over buffering n items in advance that you start

getting output immediately, rather than having to wait for all n items to

be generated. Throughput-wise, it's (strictly) better iff

n(max{p+w,c}) + min{p+w,c} < n(p+c) + w

If n is large, this is effectively the same as saying iff

max{p+w,c} < p+c

Since p is clearly non-negative, if max{p+w,c} = c then this clearly

holds. What if max{p+w,c} = p+w? Then it's better iff w < c, i.e. if

calling the output routine is less expensive than the consuming of the

output by the output device.

(iii)

With triple-buffering:

Once the producer's filled up one buffer, it can fill up a second buffer

while waiting for the consumer to consume the buffer it just filled.

There's no point in either the producer or the consumer sitting around

doing nothing when it could be doing something useful (like producing

or consuming, for instance). We want to avoid a situation where the

producer finishes writing to buffer 1, has to wait for the consumer

(which is still consuming buffer 0), finally gets access to buffer 0

when the consumer moves on to buffer 1 and then hasn't quite finished

writing to buffer 0 when the consumer finishes buffer 1, leaving the

consumer hanging around in turn. Triple-buffering won't help much if

the rates of producing and consuming are constant, but in practice they

vary, so it may be worth doing if you can spare the memory. (It can make

quite a big difference to the frame-rate in graphics applications, as

an example.) To see that it won't make much difference if the rates are

constant, just consider that then the total time will depend entirely on the

slower of the two (aside for a negligible constant at one end or the other).

For instance, there's no advantage in having the producer produce the

output earlier if the consumer's still consuming it at the same slow speed.

The only advantage to be had is if the consumer might speed up, in that

scenario.

Question 2
Suppose that a certain UNIX filesystem uses 1KB blocks, with ten direct

blocks mentioned in the i-nodes, and single, double and triple indirect blocks

with 256 entries in each indirect block. Exactly how big a file can you have

in this system? How many bits would you need for the file-length entry in

the i-node? How big is the whole filesystem?

Is this big enough for practical purposes? What would you do if it were

not?

Answer:

(i)

The biggest file you can have in this system is associated with an i-node

which references a triple indirect block. This references 256 double indirect

blocks, each of which references 256 single indirect blocks, each of which

points to 256 data blocks and thus can reference up to 256KB since each of

the data blocks is 1KB in size. Each double indirect block can reference up

to 256*256KB = 65536KB, and so the triple indirect block can reference up to

256*65536KB = 16777216KB = 16384MB = 16GB.

(ii)

The file length entry is in bytes, and the maximum file size in bytes is:

16777216*1024 = 17179869184 bytes

The number of bits needed to store the length is log2 of this, i.e.

log 17179869184 / log 2

= 34

(iii)

I'm not sure quite what's meant by "How big is the whole filesystem?" I'm

probably being dense!

(iv)

Yes, a 16GB file is (on the whole) big enough for practical purposes. What

I'd do if it wasn't depends on whether I was the system implementer or just

a user. As the system implementer, I'd probably just create quadruple indirect

blocks. As a user, I'd probably do something like make more than one 16GB file.

It's possible to write a wrapper which could make it look as though you were

accessing a single file.

Question 3
How much disk space would be consumed by the FAT (of a MS-DOS style

filesystem) on a disk with blocks like those mentioned in question 2? How

does this compare with the amount of disk consumed by the indexing in the

UNIX filesystem?

How would your answer be affected if there were more or less than ten direct

block pointers in the i-node?

Answer:

(i)

Since the FAT is a mapping from block-number to next block-number, the amount

of disk space needed would be roughly:

(no. of blocks in use * 2 * bytes needed for a block number)

(ii)

The amount of disk consumed by the indexing in the UNIX filesystem

is roughly:

(no. of i-nodes * 10 * bytes needed for a block number) +

(total no. of indirect blocks * 256 * bytes needed for a block number)

The comparison is essentially between:

FAT
no. of blocks in use * 2 ...

UNIX
(no. of i-nodes * 10 + total no. of indirect blocks * 256) ...

If the files all have sizes like(*) 10 blocks or 256^n blocks for n = 1, 2 or 3,

then the UNIX system clearly wins, because then the bracketed factor is

roughly equal to the no. of blocks in use. If the files all have sizes like

11 blocks, then FAT clearly wins, because the UNIX filesystem has to

use a single indirect block (with 256 entries) just to store 11 block

pointers. It all depends on what the average file size is.

(*) i.e. equal to or slightly smaller than

If there were more than ten direct block pointers in the i-node, then

larger files could be stored without resorting to single indirect blocks,

but all the smaller files would take up more space.

If there were fewer than ten, then single indirect blocks would need

to be used for smaller files, wasting lots of space if there are lots

of small files being stored.

Question 4
A particular program is run on a very small virtual memory system which

has five pages. The program accesses them in the order:

0 1 2 3 0 1 4 0 1 2 3 4

starting with an empty page table. What happens if the VM system is able

to use:

1. three page frames, with FIFO replacement;

2. four page frames, with FIFO replacement;

3. three page frames, with LRU replacement;

4. four page frames, with LRU replacement;

5. four page frames, with optimal replacement?

Answer:

1. three page frames, with FIFO replacement

Situation
Action








Page Table Afterwards (note: queue order)

0 is absent
(cause a page fault, suspend the process and) fetch it from disk
[0]

1 is absent
fetch it from disk






[0,1]

2 is absent
fetch it from disk






[0,1,2]

3 is absent
evict 0 from the page table and fetch 3 from disk


[1,2,3]

0 is absent
evict 1 from the page table and fetch 0 from disk


[2,3,0]

1 is absent
evict 2 from the page table and fetch 1 from disk


[3,0,1]

4 is absent
evict 3 from the page table and fetch 4 from disk


[0,1,4]

0 is present
great, use the address translation




[0,1,4]

1 is present
great, use the address translation




[0,1,4]

2 is absent
evict 0 from the page table and fetch 2 from disk


[1,4,2]

3 is absent
evict 1 from the page table and fetch 3 from disk


[4,2,3]

4 is present
great, use the address translation




[4,2,3]

2. four page frames, with FIFO replacement

Situation
Action








Page Table Afterwards (note: queue order)

0 is absent
fetch it from disk






[0]

1 is absent
fetch it from disk






[0,1]

2 is absent
fetch it from disk






[0,1,2]

3 is absent
fetch it from disk






[0,1,2,3]

0 is present
great, use the address translation




[0,1,2,3]

1 is present
great, use the address translation




[0,1,2,3]

4 is absent
evict 0 from the page table and fetch 4 from disk


[1,2,3,4]

0 is absent
evict 1 from the page table and fetch 4 from disk


[2,3,4,0]

1 is absent
evict 2 from the page table and fetch 1 from disk


[3,4,0,1]

2 is absent
evict 3 from the page table and fetch 2 from disk


[4,0,1,2]

3 is absent
evict 4 from the page table and fetch 3 from disk


[0,1,2,3]

4 is absent
evict 0 from the page table and fetch 4 from disk


[1,2,3,4]

Note that this actually worse than with three page frames! We're generating an extra

page fault compared with our previous answer. This is essentially a counter-example

showing that FIFO replacement is not monotonic.

3. three page frames, with LRU replacement

Situation
Action








Page Table Afterwards (note: sorted by time of last use)

0 is absent
fetch it from disk






[0]

1 is absent
fetch it from disk






[0,1]

2 is absent
fetch it from disk






[0,1,2]

3 is absent
evict 0 from the page table and fetch 3 from disk


[1,2,3]

0 is absent
evict 1 from the page table and fetch 0 from disk


[2,3,0]

1 is absent
evict 2 from the page table and fetch 1 from disk


[3,0,1]

4 is absent
evict 3 from the page table and fetch 4 from disk


[0,1,4]

0 is present
great, use the address translation




[1,4,0]

1 is present
great, use the address translation




[4,0,1]

2 is absent
evict 4 from the page table and fetch 2 from disk


[0,1,2]

3 is absent
evict 0 from the page table and fetch 3 from disk


[1,2,3]

4 is absent
evict 1 from the page table and fetch 4 from disk


[2,3,4]

4. four page frames, with LRU replacement

Situation
Action








Page Table Afterwards (note: sorted by time of last use)

0 is absent
fetch it from disk






[0]

1 is absent
fetch it from disk






[0,1]

2 is absent
fetch it from disk






[0,1,2]

3 is absent
fetch it from disk






[0,1,2,3]

0 is present
great, use the address translation




[1,2,3,0]

1 is present
great, use the address translation




[2,3,0,1]

4 is absent
evict 2 from the page table and fetch 4 from disk


[3,0,1,4]

0 is present
great, use the address translation




[3,1,4,0]

1 is present
great, use the address translation




[3,4,0,1]

2 is absent
evict 3 from the page table and fetch 2 from disk


[4,0,1,2]

3 is absent
evict 4 from the page table and fetch 3 from disk


[0,1,2,3]

4 is absent
evict 0 from the page table and fetch 4 from disk


[1,2,3,4]

5. four page frames, with optimal replacement

Optimal replacement means evicting pages which aren't required for the longest time.

Situation
Action








Page Table Afterwards (note: no particular order)

0 is absent
fetch it from disk






[0]

1 is absent
fetch it from disk






[0,1]

2 is absent
fetch it from disk






[0,1,2]

3 is absent
fetch it from disk






[0,1,2,3]

0 is present
great, use the address translation




[0,1,2,3]

1 is present
great, use the address translation




[0,1,2,3]

4 is absent
evict 3 from the page table and fetch 4 from disk


[0,1,2,4]

0 is present
great, use the address translation




[0,1,2,4]

1 is present
great, use the address translation




[0,1,2,4]

2 is present
great, use the address translation




[0,1,2,4]

3 is absent
evict something (impossible to say what, since we don't know
[1,2,3,4]



what the program's going to do after this) and fetch 3 from disk -



clearly the thing we evict isn't 4, since we're about to use that,



but whether it's 0, 1 or 2 here is essentially arbitrary since we



have no other information - I'm going to use 0 arbitrarily

4 is present
great, use the address translation




[1,2,3,4]

Question 5
Prove that LRU page replacement is monotonic.

Answer:

The most obvious way to prove it proceeds as follows:

Lemma 1

When using LRU replacement, after an input sequence containing n unique page numbers

(which may of course be repeated), a page table of maximum size k contains the min{k,n}

most recently used page numbers.

Proof

(i) Once the page table is at its maximum size k, its size never decreases, because the

only time we evict a page is when we're fetching a new one.

(ii) When the page table is smaller than k, either the page we're accessing is in the

page table (in which case the page table remains the same size, namely n, the number of

unique page numbers in the input sequence so far), or it's not, in which case n increases

by 1 and so does the size of the page table.

Lemma 2

A page table of maximum size k+1 thus contains the min{k+1,n} most recently used page

numbers, of which the min{k,n} most recently used page numbers are a subset.

Proof

The assertion is trivial (substitute k+1 for k in Lemma 1). The point about it being

a subset is also trivial, but if you wanted to show it then you might proceed as

follows:

Define an ordering < on the page numbers s.t.

i < j -> j has been used more recently than i (note that this is irreflexive)

Call the set of min{k,n} most recently used page numbers S[k] and the set of min{k+1,n}

most recently used page numbers S[k+1].

Suppose, for a contradiction, that there is some element e1 in S[k] s.t. e1 is not in

S[k+1]. Then for every e2 in S[k+1], e1 < e2. This means that there min{k+1,n} page

numbers which have been used more recently than e1. But in that case, it can't

possibly be in S[k], since min{k+1,n} >= min{k,n}. By contradiction, therefore, e1

can't exist and S[k] is a subset of S[k+1].

Lemma 3

It's never a disadvantage (at least from an accessing point of view) to have an extra

page in the page table.

Proof

Think about what happens when we look up a page:

By Lemma 2, if it was in the page table of maximum size k, it's still in the page table

of maximum size k+1. So we're not making matters worse by increasing the number of page

frames.

If it wasn't in the page table of maximum size k, it may still not be in the page table

of maximum size k+1, in which case we've lost nothing. Alternatively, it might be in the

larger page table, in which case we've done better than we were doing before.

Either way, having an extra page frame does us no harm, and might improve matters.

Question 6
Each UNIX i-node contains a link-count, which is a count of the number of

times the i-node number appears in a directory entry. This information is

redundant: why is it there?

Answer:

(Self-note: The relevant bit of Tanenbaum and Woodhull is on p.428)

It's there so that the blocks it references can be freed when the last link to the

i-node is removed, without needing to walk over the entire directory system to

check whether it's being referenced elsewhere.

(Of course, we need to ensure that the link-count is always consistent with

the actual number of references to the i-node. Otherwise, we end up with

the sort of problems mentioned in Tanenbaum on the page above. This involves

consistency-checking after a crash, which involves walking over the entire

directory system and rectifying any link-counts which are incorrect.)

Question 7
One of the observations made (in lectures) about the redundant representation

of the UNIX file system is that it is possible (and periodically necessary)

to check that redundant information is correct.

Compare the file system with the memory management of 'heap' storage used

to keep non-stack variables in programming languages like Oberon and Java,

or the implementations of languages like Haskell. Similar efficiency concerns

mean that there is probably a redundant representation of the free store.

Why is there no equivalent to the file system check (fsck)?

Answer:

(i)

Comparison

The file system isn't garbage-collected, if we want to delete something we

do it explicitly and its blocks are freed as soon as there are no more references

to it. The heap in languages like Java is garbage-collected, so the memory

occupied by objects which are no longer used won't be reclaimed until the

garbage collector runs. We don't have to explicitly delete anything in

Java, but we lose a certain amount of control over exactly when we get the

used memory back.

(ii)

There's no equivalent to the file system check because that's only run

after a crash. If a program crashes, all the stuff on the heap should

just be freed. Essentially, the point is that heap storage is transient,

whereas things stored on disk are intended to stay there unless we

actually want to delete them.

Question 8
The bulk storage of the 'hierarchical filestore' (*) in OUCS consists of a large

number of cassette-mounted magnetic tapes, a smaller number of tape drives

and a robot that can carry tapes between the drives and some racks.

Suggest a likely design for the computer system which makes the library of

tapes appear to be a large (but very slow) filestore. Do any parts of your

design require special hardware support?

(*) http://www.oucs.ox.ac.uk/hfs/

Answer:

One (ridiculously slow) way I can think of doing it is as follows:

The main system has a mapping from top-level directory names to tapes. When

you access something lower down the hierarchy, either the file is on the tape

associated with the top-level name, or that tape has a mapping from the names

of its subdirectories to other tapes. You fetch the next tape down in the path

and keep going until you find the file.

Example:

To access /x/y/z/w, you'd first look up x in the mapping on the main system, then

get the tape for x. You look in the mapping for x, find it has an entry for y (so

y's not on the x tape), and get the tape for y. You look in the mapping for y, find

it has no entry for z (so z's on the y tape) and get the w file in the z directory

on the y tape.

This is horribly slow, of course, because you have to keep getting tapes all the time,

but it's hierarchical (as the name suggests) and works. Furthermore, it scales well

when we add more data, provided we're not adding a large number of directories at

the top-level.

The only special hardware support this requires is for there to be a command available

telling the robot to go and fetch a particular tape.

Question 9
Sun's network filesystem (NFS) supports access to the files on one machine

from another. Files on the server occupy their normal positions in the UNIX

filesystem on that server. However a client has access to these files through

an interface which appears to be a UNIX filesystem on the client, but which

actually reads and writes the files on the server using remote procedure calls

over a network. At least until recent versions of NFS, the server is stateless,

apart of course from the state stored in the filesystem. (Why would stateless

servers be a good idea?)

Sometimes, when an NFS file is deleted (that is, when the last link to it is

removed from the directory tree) the NFS server makes a new link to it under

a 'hidden' name, .nfs<n>.

Why do you think this is? (What part of the normal management of a UNIX

filesystem is difficult to implement in NFS?)

Answer:

TODO

Question 10

Documents on the World Wide Web are identified by URIs consisting of a

scheme, an authority, and a path. At least in the case of most documents at

URIs with the http scheme, the authority is a DNS hostname, and the path

is something quite like a filename on that host.

What would be wrong with identifying the path with a filename?

Suppose that a server implements a full range of http primitives including

PUT and DELETE. In what ways is the management of a web of documents

different from managing a UNIX filestore? (For example, how do you tell

when it is safe to reclaim the storage occupied by a document?)

Answer:

(i)

What's wrong with that is that it doesn't necessarily have to be a file on

disk. Server-side scripting, in particular, relies on generating content

on-the-fly, and it would be stupid to write that content to the file

associated with the request we've just received in order to then supply

the file we've just written to the client. It's a lot more sensible to

just send them the data straight away.

(ii)

TODO
