Stuart Golodetz

FAO: Dr. Geraint Jones

Networks and Operating Systems

Tutorial 2
Question 1

Suppose a cube-shaped building has n offices on each of n corridors on

n floors, and that all the rooms are cube-shaped and have a single ethernet

point in them. There are cable trays along each corridor, a duct across the

middle of the ceiling on each floor to join the corridors, and a vertical shaft

down the centre of the building.

How does the length of wire needed to run a single coaxial ethernet to every

office compare with the length of twisted pair cable needed to join every office

to a central switch? What does that tell you?

Answer:

Suppose the distance between offices is d1, the distance between corridors is

d2 and the distance between floors is d3.

Everything's approximate here, i.e. I've sometimes used n rather than n-1 for

simplicity, because we just want a simple comparison.

Joining offices with a single cable:

The cable will have to wrap back on itself since the duct goes across the

middle of the ceiling and the vertical shaft goes down the centre of the

building.

Assume we start at the centre of the building (there may be slightly better

ways). Then we need:

2(n.d2 + 2n(n.d1)) = 2(d1.n2 + d2.n) per floor

There are n floors; let's assume we start on the top floor and work down,

then we only need (roughly) an extra n.d3 of cable. So the total is:

2d1.n3 + 2d2.n2 + d3.n

Joining offices to a central switch:

Each corridor: n*d1
Each floor: n*(n*d1) + n*d2 = n*((n*d1)+d2)

Building: n*(n*((n*d1)+d2) + d3) = d1.n3 + d2.n2 + d3.n

This is slightly over half as much as we required with a single cable.

That suggests to me that it would make sense to go down the switch route

rather than the single cable one, because it's easier, cheaper and just

generally more sensible.

Question 2

The frames on some network are constructed from a flag byte of 01111110,

a bit-stuffed payload, a checksum, and a closing flag byte.

Is it possible for the loss, insertion, or inversion of a single bit to

cause an undetected error which corrupts the data transmitted at the data

link level? How likely is that to happen?

Answer:

Using a basic "foldr (+) 0 frame"-style checksum:

It's theoretically possible, yes. Consider the following:

01111110 <some bits with a checksum of 124> 01111110 01111110 ... 01111110

Suppose a bit in the escape byte gets inverted:

01111110 <bits> 01111100 01111110 ... 01111110

Our checksum is still correct, and it looks like we've finished the frame

earlier than we intended. This is pretty unlikely, but possible.

If we use a CRC instead, it's still possible. It's probably more unlikely,

because a CRC's likely to be longer than a simple checksum.

Question 3

Suppose that the physical layer provides a channel in only one direction

between two machines (so that is is not possible to use messages in the

opposite direction to implement flow-control). What must the peer processes

in the data-link layer do to guarantee that there is no data over-run? Will

more buffers at the receiver help?

Answer:

The sender has to send the data at a rate no greater than some threshold,

and the receiver has to make sure that its buffer always has sufficient

space in it to receive data at rates no greater than this threshold, i.e.

it has to empty its buffer at a rate no slower than the threshold, because

it has to assume that the sender is sending the data as fast as possible.

More buffers at the receiver won't help, since if the sender is sending

faster than the receiver is emptying its buffer, the buffer will eventually

fill up, however big it is.

Question 4

You are writing the data link layer software for a line used to send data to

you (but not away from you). The other end uses HDLC with a 3-bit sequence

number and a window size of seven frames. You are not allowed to modify the

other end at all but would like to buffer as many out-of-order frames as

possible.

What is the biggest window that you can use at the receiver to be sure that

the protocol cannot fail?

Answer:

The simple answer is that the biggest window is 4, since according to p.90

of the lecture notes, "Windows can be up to half the range of sequence

numbers for selective repeat to work without ambiguity between retransmission

and new transmission."

To see why this is so, consider what happens if we drop the first packet and

then lose the NAK and the next few acknowledgement signals:

Sender 0 1 2 3 4 5 6 7 ...

 {N0 A7 A7 A7}A7

Receiver E 1 2 3 4 5
Suppose all the acknowledgements except the last ACK 7 are dropped, i.e. that

the first the sender knows about the problem is when the receiver receives 5

and sends back ACK 7. By the time the sender gets this message, it's already

sent 7, so it assumes that this is merely acknowledging receipt of the latest

message and thinks nothing of it. To avoid problems like this, the receiver

window's size can't be bigger than 4.

N.B. I think I get this now, but I think we could profitably go over it

because it wasn't in the book and there's a fair chance that I don't get it

as well as I'd like.

Question 5

In what sorts of circumstances should you prefer open-loop protocols with

'forward' error correction (for example, using Hamming coding) over closed-

loop protocols with acknowledgements and retransmission?

Answer:

If the underlying medium is reasonably reliable, like Ethernet, then it is

cheaper to use closed-loop protocols, but for wireless links, which make

quite a few errors, it makes much more sense to include error-correcting

codes with frames, because requesting a retransmission is only of limited

use when, in all likelihood, the retransmitted frame will also contain errors.

Question 6

Much of the information in the Bluetooth protocol, including the frame headers

and the contents of many kinds of frame, is transmitted three times. Why would

you think that was? What is the Hamming distance between these messages?

Do the circumstances in which Bluetooth is used seem to match your answer to

question 5?

Answer:

I would guess that it's so that you can take the mode of the three values:

1 1 0 -> 1

0 1 0 -> 0

1 1 1 -> 1

0 0 0 -> 0

etc.

Since Bluetooth is a wireless protocol, and wireless links aren't especially

reliable, sending it three times will help cut down on the number of errors.

The Hamming distance between these messages is 3, since we only ever intend

to send 000 or 111, which differ in (all) three bits.

Yes, the circumstances in which Bluetooth is used seem to match my previous

answer.

Question 7

A cut-through switch (in contrast to store-and-forward switch) is one which,

as soon as the address of a frame has been seen, starts transmitting the frame

on the appropriate outgoing line. The advantage should be clear; are there any

disadvantages?

Answer:

Yes. Since we can't do any error-checking at the point at which we've only

received the address, we're going to send the frame on as it is, perpetuating

any errors and possibly taking up bandwidth unnecessarily.

Question 8

An algorithm like Dijkstra's shortest path algorithm will find a single (short)

route through a network.

Suppose a network in which routes are calculated at the source needs to provide

two routes to each destination so that each message can be sent twice, once

along each of two routes, so as to guarantee that one will arrive even if any

one of the links in the network fails. (You can ignore the possibility of the

routers failing.)

One possible method would be to run Dijkstra's algorithm to produce one route,

and then run the algorithm again on the network with each of the components of

the first path removed. Does this work?

Answer:

It depends. If we have to guarantee (as the question reads) that one will

arrive even if any one of the links in the network fails, then the answer

must be yes, for the two routes must then be disjoint.

Proof:

Let E(i) for i = 0 or 1 be the set of edges in route i

Suppose E(0) ^ E(1) /= {}

Then there is some edge e in E(0) and E(1) such that if the link which it

represents failed then neither E(0) nor E(1) would be a valid route (since

removing any edge from either breaks the route)

But we had to guarantee that at least one of the two routes would remain

unbroken if any one of the links (e included) failed.

So our supposition must be invalid, and it must be the case that

E(0) ^ E(1) = {}

Or in other words, the two routes are disjoint.

QED

Since the two routes must be disjoint, removing all the edges in one of

the routes will mean that either we get a route disjoint to the first

by applying Dijkstra's algorithm to the new graph, or we get an error

(no path found).

However...one could argue (and I mean to!) that it is always an

advantage to have two paths rather than one in this situation, even if

they have one or more edges in common. Whilst we want to minimise the

number of edges they have in common, we are willing to accept some if

there isn't any other way of doing it. Thus a better method than the

above would simply be to set the weights on the edges in the first

route to an extremely large number. Thus the links would still be

there, but the algorithm would only choose them if it had no other

choice.

Question 9

The IPv6 protocol uses addresses that are sixteen bytes long. If addresses

are allocated evenly in a layer fifteen kilometres deep over the surface of

the earth, about how many will there be per cubic metre? If a block of a

million addresses is allocated every picosecond, how long will they last?

How inefficient do you think the allocation scheme can be for the

scheme to last long enough?

Answer:

The radius of the earth is (roughly) r = 6.4*106 metres

The volume of the 15 km thick surface is thus:

V

= 4PI/3(r3 - (r-15*103)3) m3
= 7702696669950303000 m3
= 7.70 * 1018 m3 (3SF)

Now, 16 bytes = 128 bits, so there are 2128 possible IPv6 addresses.

2128 = 3.40*1038 (3SF)

So we calculate:

3.40*1038 addresses / 7.70 * 1018 m3
= 44177043638294266363.869021157658 addresses / m3
= 4.4*1019 addresses / m3 (2SF)

A picosecond is 10-12 seconds, so we're allocating 1012 million addresses

a second. That's 1018 addresses every second! So they would last for about

3.4 * 1020 seconds, which is quite a long time, if you ask me.

Ideally, people don't ever want to change from IPv6 to something else,

because changing from IPv4 to IPv6 is an ongoing pain in the neck. So we

want the scheme to last either forever (implausible) or, more accurately,

until either (a) the Sun becomes a red giant and engulfs the Earth or

(b) we come up with a cunning plan which makes IP addresses redundant.

Coming neatly to the point, therefore, we need an allocation scheme which

will work for the next five billion years or so.

5 billion years

= 5*109 years

= 5*109 * 365.25 * 86400 seconds

= 157788000000000000 seconds

= 1.6*1017 seconds

So we can allocate (3.4/1.6)*1021 addresses per second, even assuming that

once a device has been allocated an address, it keeps it forever. Of course,

in practice we'd reallocate the addresses once devices became defunt, but

even if we didn't, we'd still have enough. The number of available addresses

(3.4*1038) is simply huge, so you would actually struggle to come up with

an allocation scheme inefficient enough to cause a problem.

Question 10

A datagram network allows routers to drop packets when they need to do so.

When a packet is discarded, the source eventually times out and retransmits.

If the probability of a router discarding a packet is p, and there are n hops

in the path to the destination, what is the mean number of hops a packet makes

per transmission; of transmissions made of a given packet; of hops required

per received packet?

Answer:

(i)

This is a binomial distribution, with n trials, the result of each being true

with probability p and false with probability 1 - p.

The mean number of hops a packet makes per transmission is thus:

np

(ii)

We keep transmitting until we get through, so we first want to calculate the

probability that our packet made all n hops successfully:

pn
Now, if we transmit it twice, and assuming that the probability that it will

get through the second time is independent of the probability that it will

get through the first time, it is twice as likely to get through. And if

we generalise this, if we transmit it k times, it is k times as likely to

get through. So the probability that it will get through after k transmissions

is k.pn. Well, we keep transmitting until

k.pn = 1

So we transmit 1/(pn) times on average

(iii)

The mean number of hops required per received packet is the mean number of

transmissions multiplied by the mean number of hops made per transmission,

so it's simply:

np/(pn)

= n/(pn-1)
