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1. Which of the following would you regard a stiff initial value problem?

(a) y′ = −(105e−104x + 1)(y − 1), y(0) = 2, on the interval x ∈ [0, 1]. Note that the solution
can be found in closed form:

y(x) = e10(e−104x−1)e−x + 1.

(b)

y′1 = −0.5y1 + 0.501y2, y1(0) = 1.1,

y′2 = 0.501y1 − 0.5y2, y2(0) = −0.9,

on the interval x ∈ [0, 1].

Answer

(a) This is clearly a stiff initial value problem. Problems are called stiff if their solutions decay
rapidly towards a common, slowly-varying solution, and the solution of this (which we’ve
helpfully been given) clearly decays rather quickly towards 1.

(b) To determine whether this is stiff or not, we first solve it analytically. Let y = (y1, y2)
T

and y′ = (y′1, y
′
2)

T , then:

y′ =

[
−0.5 0.501
0.501 −0.5

]
︸ ︷︷ ︸

A

y

As per our first-year Calculus course1, we find the general solution of this by looking at
the eigenvalues of A. Accordingly, we write:

0 = |A− λI| =
∣∣∣∣ −0.5− λ 0.501

0.501 −0.5− λ

∣∣∣∣ = (−0.5− λ)2 − 0.5012 = λ2 + λ− 0.001001

This has roots when λ = 0.001 or λ = −1.001, which are therefore the two eigenvalues
of A. Calculating the corresponding eigenvectors:

0 = (A− 0.001I)x =

(
−0.501 0.501
0.501 −0.501

)
x

So if x = (x1, x2)
T , then −0.501x1 + 0.501x2 = 0 ⇒ x1 = x2, whence any multiple of

(1, 1)T is an eigenvector of A corresponding to λ = 0.001. Similarly:

0 = (A + 1.001I)x =

(
0.501 0.501
0.501 0.501

)
x

From this it’s quite clear that the eigenvectors corresponding to the other eigenvalue are
multiples of (1,−1)T .

Our general solution is therefore given by:

y = c1

(
1
1

)
e0.001x + c2

(
1
−1

)
e−1.001x

1Which was sadly rather too distant a memory!
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In other words, y1 = c1e
0.001x + c2e

−1.001x and y2 = c1e
0.001x − c2e

−1.001x. We now apply
the initial conditions: if y1(0) = 1.1, then c1 + c2 = 1.1, and if y2(0) = −0.9, then
c1 − c2 = −0.9. So 2c1 = 0.2 ⇒ c1 = 0.1 and c2 = 1. Whence y1 = 0.1e0.001x + e−1.001x

and y2 = 0.1e0.001x − e−1.001x.

This shouldn’t be regarded as a stiff problem. As x → ∞, the e−1.001x terms in both y1

and y2 will tend to 0, leaving y1 and y2 to grow exponentially like 0.1e0.001x. Exponential
growth cannot be described as a ‘slowly-varying solution’, so the problem is not stiff.

2. Consider the θ-method

yn+1 = yn + h [(1− θ)fn + θfn+1]

for θ ∈ [0, 1].

(a) Show that the method is A-stable for θ ∈ [1/2, 1].

(b) A method is said to be A(α)-stable, α ∈ (0, π/2), if its region of absolute stability (as a
set in the complex plane), contains the infinite wedge {h̄ : π − α < arg(h̄) < π + α}.
Find all θ ∈ [0, 1] such that the θ-method is A(α)-stable for some α ∈ (0, π/2).

Answer

(a) We apply the θ-method to y′ = λy, y(0) = 1, where Re(λ) < 0. We need to find its
region of absolute stability (for various values of θ, obviously). As per the previous sheet,
we first work out what its stability polynomial is. So, we note that (referring to the general
definition of a linear multistep method), α1 = 1, α0 = −1, β1 = θ and β0 = 1 − θ,
whence:

ρ(z) = z − 1

and:

σ(z) = θz + (1− θ) = θ(z − 1) + 1

Hence the stability polynomial can be calculated as:

π(z; h̄) = ρ(z)− h̄σ(z) = (z − 1)− h̄(θ(z − 1) + 1) = (z − 1)(1− h̄θ)− h̄

where h̄ = λh. For absolute stability, we require that the root z of this polynomial satisfies
|z| < 1, so: ∣∣∣∣ h̄

1− h̄θ
+ 1

∣∣∣∣ =
|h̄(1− θ) + 1|
|1− h̄θ|

< 1

So:

|h̄(1− θ) + 1| < |1− h̄θ|
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Now, since h̄ ∈ C we write h̄ = x + iy and calculate things that way, as the complex
numbers are not ordered so we can’t proceed by a more direct approach. We get:

|(x + iy)(1− θ) + 1| < |1− (x + iy)θ|

|[x(1− θ) + 1] + i[y(1− θ)]| < |[1− xθ] + i[−yθ]|

x2(1− θ)2 + 2x(1− θ) + 1 + y2(1− θ)2 < 1− 2xθ + x2θ2 + y2θ2

(x2 + y2)(1− θ)2 + 2x(1− θ) + 1 < 1− 2xθ + (x2 + y2)θ2

(x2 + y2)(1− 2θ) + 2x < 0

Now, if θ ∈ [1/2, 1], then −1 ≤ 1− 2θ ≤ 0, so we have:

(x2 + y2)(1− 2θ) + 2x ≤ 2x < 0

i.e. x < 0. But x ≡ Re(h̄), so this condition is satisfied for all h̄ in the left-hand complex
half-plane, so the method is A-stable for θ ∈ [1/2, 1].

(b) We observe that our region of absolute stability for the θ-method (with a particular value
of θ) was calculated above to be:

{h̄ : |h̄|2(1− 2θ) + 2Re(h̄) < 0}

Alternatively, we can write this as:

{h̄ : Re(h̄) < h̄2(θ − 1/2)} (∗)

(Incidentally, this makes it clear where the above answer came from: clearly if Re(h̄) < 0,
then the inequality above is always satisfied provided θ−1/2 ≥ 0, i.e. provided θ ≥ 1/2.)

For a start, it’s clear that for θ ∈ [1/2, 1], the θ-method is A(α)-stable for all α ∈ (0, π/2),
since the infinite wedges are all contained in the left-hand complex half-plane and we just
showed in part (a) that the regions of absolute stability for those values of θ included the
whole left-hand complex half-plane, never mind any particular infinite wedge contained
within it.

For the rest, we note2 that iff the θ-method (for some value of θ) is A(α)-stable for any
α ∈ (0, π/2) then the method’s region of absolute stability (for that value of θ) contains the
negative real axis. Or to put it another way, if, for some value of θ, the set defined by (∗)
contains all negative real numbers, then the θ-method with that value of θ is A(α)-stable
for some value of α ∈ (0, π/2), even though we don’t necessarily know which value that
is. So we want to find the values of θ ∈ [0, 1] s.t. for every real x < 0,

x2(θ − 1/2)− x > 0.

2After reading through the extended lecture notes, at any rate!
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Well, since x < 0, we can divide through by it (making sure to change the sign, of course!),
to give:

x(θ − 1/2)− 1 < 0,

from which we get (again switching the sign, because x < 0):

θ > 1/x + 1/2

In the limit, as x → −∞, this condition becomes θ ≥ 1/2 (note that it’s not θ > 1/2,
because we can make 1/x arbitrarily small). So we can see that no value of θ < 1/2 will
give rise to a θ-method that is A(α)-stable.

To make things even clearer, fix some value θ̂ < 1/2, then considering the set

S = {h̄ : Re(h̄) < h̄2(θ̂ − 1/2)}

and the case where h̄ ≡ x is real and negative, we see that if x ≤ 1/(θ̂ − 1/2), then
x 6∈ S. Since there is always some negative real satisfying this, the negative real axis can’t
be contained in S when θ < 1/2.
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Note: In the next question you will find it helpful to exploit the following result, known as
Schur’s criterion. Consider the polynomail φ(z) = ckz

k + . . . + c1z + c0, ck 6= 0, c0 6= 0, with
complex coefficients. The polynomial φ is said to be a Schur polynomial if each of its roots zj

satisfies |zj| < 1, j = 1, . . . , k. Given the polynomial φ(z), as above, consider the polynomial

φ̂(z) = c̄0z
k + c̄1z

k−1 + . . . + c̄k−1z + c̄k,

where c̄j denotes the complex conjugate of cj , j = 1, . . . , k. Further, let us define

φ1(z) =
1

z

[
φ̂(0)φ(z)− φ(0)φ̂(z)

]
.

Clearly φ1 has degree ≤ k− 1. The polynomial φ is a Schur polynomial if and only if |φ̂(0)| >
|φ(0)| and φ1 is a Schur polynomial.

3. Show that the second-order backward differentiation method

3yn+2 − 4yn+1 + yn = 2hf(xn+2, yn+2)

is A-stable.

Answer

To determine the method’s A-stability, we first of all need to determine its stability polynomial.
Again referring to the general definition of a linear multistep method, we have that α2 = 3,
α1 = −4, α0 = 1, β2 = 2 and β1 = β0 = 0. Thus:

ρ(z) = 3z2 − 4z + 1

σ(z) = 2z2

π(z; h̄) = ρ(z)− h̄σ(z) = 3z2 − 4z + 1− h̄(2z2) = z2(3− 2h̄) + z(−4) + 1

We want to use Schur’s criterion to find the range of h̄ ∈ C such that π(z; h̄) is a Schur
polynomial. If, as we hope, it includes the whole negative half-space, then we will have shown
that the method is A-stable, as required. Accordingly, we calculate that

π̂(z; h̄) = z2 + z(−4) + (3− 2ˆ̄h),

where ˆ̄h is the complex conjugate of h̄ (the notation is rather obtuse, but it will have to do).

Furthermore, we define:

π1(z; h̄) =
1

z

[
π̂(0; h̄)π(z; h̄)− π(0; h̄)π̂(z; h̄)

]
.
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We need to check both that |π̂(0; h̄)| > |π(0; h̄)| and that π1 is a Schur polynomial (we only need
to worry about h̄ in the negative half-plane, incidentally). Considering the inequality condition
first:

|π̂(0; h̄)| = |3− 2ˆ̄h|

|π(0; h̄)| = 1

If we let h̄ = x + iy, then ˆ̄h = x− iy and |3− 2ˆ̄h| = |3− 2(x− iy)|. It suffices to determine
when:

|3− 2(x− iy)|2 > 12

We therefore calculate as follows:

|3− 2(x− iy)|2 = |(3− 2x) + i(2y)|2 = (3− 2x)2 + 4y2 = 9− 12x + 4(x2 + y2)

This is greater than 1 provided:

4(x2 + y2)− 12x + 8 > 0

Well:

4(x2 + y2)− 12x + 8 ≥ 4x2 − 12x + 8 = 4(x2 − 3x + 2) = 4(x− 2)(x− 1)

In other words, the roots of this are in the positive half-space, so we don’t need to worry about
them (note that changing y would just move the quadratic up a bit and the roots would still be
in the positive half-space). Thus when x < 0, i.e. when h̄ is in the negative half-space of the
complex plane, |π̂(0; h̄)| > |π(0; h̄)|.
Now for the condition on π1. We calculate that:

π1(z; h̄) =
1

z

[
π̂(0; h̄)π(z; h̄)− π(0; h̄)π̂(z; h̄)

]
=

1

z

[
(3− 2ˆ̄h)(z2(3− 2h̄)− 4z + 1)− (z2 − 4z + (3− 2ˆ̄h))

]
=

1

z

[
z2((3− 2ˆ̄h)(3− 2h̄)− 1)− 4z((3− 2ˆ̄h)− 1)

]
= z((3− 2ˆ̄h)(3− 2h̄)− 1)− 4((3− 2ˆ̄h)− 1)

= z((3− 2(x− iy))(3− 2(x + iy))− 1)− 4((3− 2(x− iy))− 1)

= z((3− 2x)2 + 4y2 − 1) + 8((x− 1)− iy)

= z(9− 12x + 4(x2 + y2)− 1) + 8((x− 1)− iy)

= z(8− 12x + 4(x2 + y2)) + 8((x− 1)− iy)

= 4z(2− 3x + x2 + y2) + 8((x− 1)− iy)

= 4z((x− 2)(x− 1) + y2) + 8((x− 1)− iy)
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This has a root when:

z =
−8((x− 1)− iy)

4((x− 2)(x− 1) + y2)
=

−2((x− 1)− iy)

(x− 2)(x− 1) + y2

We want to show that |z| < 1 provided x < 0, i.e. that:∣∣∣∣ (x− 1)− iy

(x− 2)(x− 1) + y2

∣∣∣∣ <
1

2

Well, firstly split this into real and imaginary parts:∣∣∣∣∣∣∣∣
x− 1

(x− 2)(x− 1) + y2︸ ︷︷ ︸
A

+i
−y

(x− 2)(x− 1) + y2︸ ︷︷ ︸
B

∣∣∣∣∣∣∣∣
We note that

|A| ≤ 1

|x− 2|

(since adding y2 can only increase the denominator when x < 0) and that for x < 0, the
denominator of the above is always strictly greater than 2, whence |A| < 1

2
. This already gives

us that the method is A(0)-stable, since the region of absolute stability includes everywhere
where y = 0, i.e. the whole negative real axis.

To show that it’s also A-stable, we need to show that A2 + B2 < 1
4
. (This is clearly true when

B = 0, since then A2 < 1
2

2
= 1

4
.) We therefore calculate:

A2 + B2 =
(x− 1)2 + y2

[(x− 2)(x− 1) + y2]2
=

(x− 1)2 + y2

(x− 2)2(x− 1)2 + 2(x− 2)(x− 1)y2 + y4

To show that this is less than 1
4
, it suffices to show that (when x < 0):

4((x− 1)2 + y2) < (x− 2)2(x− 1)2 + 2(x− 2)(x− 1)y2 + y4

In other words, we must show that:

y4 + y2(2(x− 2)(x− 1)− 4︸ ︷︷ ︸
C

) + (x− 2)2(x− 1)2 − 4(x− 1)2︸ ︷︷ ︸
D

> 0

We know that y4 > 0, so it suffices to show that C > 0 and D > 0. Well, if x < 0, then C > 0,
for (x− 2)(x− 1) > 2. Furthermore, D > 0, since:

D = (x− 1)2︸ ︷︷ ︸
E

((x− 2)2 − 4)︸ ︷︷ ︸
F

and E > 0 because it’s a square and F > 0 because x < 0 and hence (x − 2)2 > 4. So
A2 + B2 < 1

4
as desired, and if we backtrack, we have what we want. So the method is

A-stable. (Finally!)
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