Stuart Golodetz

FAO: Dr. G. Jones

Models of Computation
Tutorial Exercises 4
1.
We have to prove that there is an atomic TM that accepts a language iff it is r.e.
=>)
By definition, a language is r.e. if some TM, atomic or otherwise, accepts it.

<=)

Suppose a language L is r.e. Then, by definition, there is some TM M = (QM, Σ, Γ, …, δM, q0, qacc, qrej) (which isn’t necessarily atomic) which accepts it. From M, we construct an atomic TM A = (QA, Σ, Γ, …, δA, q0, qacc, qrej) that accepts L as follows:
i. QA = QM U {((q,γ) (QM x ΓM : qγ,L and qγ,R}
ii. Replace every transition in M of the form δ(q,a) = (q’,b,L) with the following two transitions in A:
δ(q,a) = (qa,L,b,<no change>)

δ(qa,L,<anything>) = (q’,<no change>,L)
iii. Replace every transition in M of the form δ(q,a) = (q’,b,R) with the following two transitions in A:
δ(q,a) = (qa,R,b,<no change>)

δ(qa,R,<anything>) = (q’,<no change>,R)
The idea is to simulate every transition consisting of writing on the tape and moving the tape head at the same time with two transitions in the atomic TM, by “storing” the second transition in a change of state.

QED

2.

Informal description:

1. Scan out to the end of the input and add a right-endmarker ┤.

2. Scan back to the start of the input.

3. Mark all the a’s with `.
4. If there are no b’s left after the a’s, accept.

5. Otherwise, delete the first n remaining b’s by starting at the left each time, removing the mark from one a, and moving along to erase the first b. If we run out of b’s to erase before the last a has been unmarked, reject.
6. Go back to 2 and start again.

Implementation level description:

({q0, 1, 2, 3, 4, 5, qacc, qrej}, {a,b}, Σ U {├, □, ┤, a`}, ├, □, δ, q0, qacc, qrej)
where δ =
	
	├
	a
	b
	a`
	□
	┤

	q0
	(q0, ├, R)
	(q0, a, R)
	(q0, b, R)
	–
	(1, ┤, L)
	–

	1
	(2, ├, R)
	(1, a, L)
	(1, b, L)
	–
	(1, □, L)
	–

	2
	–
	(2, a`, R)
	(3, b, L)
	–
	(2, □, R)
	(qacc, –, –)

	3
	(4, ├, R)
	(4, a, R)
	(3, b, L)
	(3, a`, L)
	(3, □, L)
	–

	4
	–
	(4, a, R)
	(1, b, L)
	(5, a, R)
	(1, □, L)
	(qacc, –, –)

	5
	–
	–
	(3, □, L)
	(5, a`, R)
	(5, □, R)
	(qrej, –, –)

Example: Accepting run on aabbbb
├ a a b b b b □ □ …

↑ q0
├ a a b b b b □ □ …
 ↑ q0
…
├ a a b b b b □ □ …

 ↑ q0
├ a a b b b b ┤ □ …

 ↑ 1
…
├ a a b b b b ┤ □ …

↑ 1

├ a a b b b b ┤ □ …

 ↑ 2

├ a` a b b b b ┤ □ …

 ↑ 2
├ a` a` b b b b ┤ □ …

 ↑ 2

├ a` a` b b b b ┤ □ …

 ↑ 3

├ a` a` b b b b ┤ □ …

 ↑ 3
├ a` a` b b b b ┤ □ …

↑ 3
├ a` a` b b b b ┤ □ …

 ↑ 4

├ a a` b b b b ┤ □ …

 ↑ 5

├ a a` b b b b ┤ □ …

 ↑ 5

├ a a` □ b b b ┤ □ …

 ↑ 3
├ a a` □ b b b ┤ □ …

 ↑ 3

├ a a` □ b b b ┤ □ …

 ↑ 4

├ a a □ b b b ┤ □ …

 ↑ 5

├ a a □ b b b ┤ □ …

 ↑ 5
├ a a □ □ b b ┤ □ …

 ↑ 3
├ a a □ □ b b ┤ □ …

 ↑ 3

├ a a □ □ b b ┤ □ …

 ↑ 4

├ a a □ □ b b ┤ □ …

 ↑ 1
…

├ a a □ □ b b ┤ □ …

↑ 1

├ a a □ □ b b ┤ □ …

 ↑ 2

├ a` a □ □ b b ┤ □ …

 ↑ 2

├ a` a` □ □ b b ┤ □ …

 ↑ 2

…

├ a` a` □ □ b b ┤ □ …

 ↑ 2

├ a` a` □ □ b b ┤ □ …

 ↑ 3
…

├ a` a` □ □ b b ┤ □ …

↑ 3

├ a` a` □ □ b b ┤ □ …

 ↑ 4
├ a a` □ □ b b ┤ □ …

 ↑ 5
…
├ a a` □ □ b b ┤ □ …

 ↑ 5

├ a a` □ □ □ b ┤ □ …

 ↑ 3
…

├ a a` □ □ □ b ┤ □ …

 ↑ 3
├ a a` □ □ □ b ┤ □ …

 ↑ 4

├ a a □ □ □ b ┤ □ …

 ↑ 5

…

├ a a □ □ □ b ┤ □ …

 ↑ 5

├ a a □ □ □ □ ┤ □ …

 ↑ 3

…
├ a a □ □ □ □ ┤ □ …

 ↑ 3

├ a a □ □ □ □ ┤ □ …

 ↑ 4

├ a a □ □ □ □ ┤ □ …

 ↑ 1

…

├ a a □ □ □ □ ┤ □ …

↑ 1

├ a a □ □ □ □ ┤ □ …

 ↑ 2

…

├ a` a` □ □ □ □ ┤ □ …

 ↑ 2

…

├ a` a` □ □ □ □ ┤ □ …

 ↑ 2

├ a` a` □ □ □ □ ┤ □ …

 ↑ qacc
3.

Suppose L1 and L2 are decidable languages, that is: there exist deciders D1 and D2 for L1 and L2 respectively.

(a)

We construct a TM D to recognise L1 U L2 as follows:
1. Run TMs D1 and D2 in parallel on the input.
2. If either accepts, accept; if both reject, reject.

This will always terminate, because D1 and D2 are deciders and hence terminate. Thus D decides L1 U L2, and the collection of decidable languages is hence closed under union.

(b)

We construct a TM D to recognise L1 . L2 as follows:
1. Run TM D1 on the input until it halts in either an accept state or a reject state.

2. If it’s in a reject state, reject.

3. If it’s in an accept state, run TM D2 on the remainder of the input.

4. If D2 accepts, accept; if D2 rejects, reject.
Similar to (a), this shows that the collection of decidable languages is closed under concatenation.

(c)

We construct a TM D to recognise L1* as follows:
1. Run TM D1 on the input until it halts in either an accept state or a reject state.
2. If it’s in a reject state, reject.

3. If it’s in an accept state and there is no input remaining, accept; otherwise, go back to 1.

Thus the collection of decidable languages is closed under star.

(d)

We construct a TM D to recognise (L1)C as follows:
1. Run TM D1 on the input until it halts in either an accept state or a reject state.
2. If it’s in an accept state, reject; if it’s in a reject state, accept.

Thus the collection of decidable languages is closed under complement.

(e)

We construct a TM D to recognise L1 ∩ L2 as follows:
1. Run TMs D1 and D2 in parallel on the input.

2. If both accept, accept; if either rejects, reject.

Thus the collection of decidable languages is closed under intersection.
The collection of r.e. languages is not closed under all the above operations (see (d)). Suppose L1 and L2 are r.e. languages, that is: there exist TMs R1 and R2 that accept L1 and L2 respectively.
(a)

We construct a TM R to accept L1 U L2 as follows:
1. Run TMs R1 and R2 in parallel on the input.
2. If either of them accepts, accept; if both of them reject, reject.

This will accept if one of R1 or R2 accepts, so the collection of r.e. languages is closed under union.
(b)

We construct a TM R to accept L1 . L2 as follows:

1. Run TM R1 on the input.

2. If it halts in a reject state, reject.

3. If it halts in an accept state, run TM R2 on the remainder of the input.

4. If R2 halts in an accept state, accept; if R2 halts in a reject state, reject.

Either one of R1 or R2 may not halt, but that doesn’t matter.
(c)

We construct a TM R to accept L1* as follows:
1. Run TM R1 on the input.

2. If it halts in a reject state, reject.

3. If it halts in an accept state and there is no input remaining, accept; otherwise go back to 1.

As in (b), R1 may not halt, but that doesn’t matter.
(d)

The collection of r.e. languages is not closed under complement, since then we would have r.e. = co-r.e., which would imply that the collection of r.e. languages is the same as the collection of decidable languages (see the Theorem in the notes).
(e)

We construct a TM R to accept L1 ∩ L2 as follows:
1. Run TMs R1 and R2 in parallel on the input.

2. If both accept, accept; if either rejects, reject.

Either one of R1 or R2 may not halt, but that doesn’t matter.
4.

Sorry, no idea how to even start on this one!
5.

(a)

If the question means the input “aaa…a” (length 127):
This is decidable (at least in theory), since we’re just checking whether it runs for a finite number of steps (as opposed to whether it runs forever). The language we want a decider for is:
L = {<M> : M is a TM which runs for at least 127127 steps on input a127}

We construct a TM R to recognise L as follows:

1. Run M on the input.

2. If M halts before 127127 steps are up, reject.
3. Otherwise, accept as soon as we’ve done 127127 steps.
Note that since 127127 ≈ 1.52 x 10267, R might take quite a while(!) to return an answer.
If the question means “for any input a127”:

This is undecidable. There are an infinite number of possible inputs, so although we can enumerate them, we can’t try all of them.
(b)

I don’t think this one is decidable, but I’m not sure how to prove it. On the other hand, I think it is r.e. (not that that’s part of the question), because Σ* is countable and so we can simply try inputs, e.g. for Σ = {a,b}, we could try: a, b, aa, ab, ba, bb, … and just keep going. If we find one where it reenters the start state, we accept.
6.

No, it isn’t. We use Rice’s theorem to show this. First we have to show that it satisfies the two requirements of the theorem:
(1)
For any TMs M1 and M2 where L(M1) = L(M2), we have <M1> (P iff <M2> (P, i.e. the membership of a TM M in P depends only on
the language of M.

This is clearly true here. Let P = {<M> : M is a TM accepting every string}. Then the membership of a TM M in P depends only on whether it accepts every string, i.e. it depends only on the language of M.

(2)
There are TMs M1 and M2 where <M1> (P and <M2> (P, i.e. P is non-trivial.
Again, this is true here, since the majority of TMs don’t accept every string, and constructing one which would accept every string is trivial.

So Rice’s theorem, that every non-trivial property of the r.e. sets is undecidable, applies. Thus it is undecidable whether a given Turing machine accepts every string.
