Stuart Golodetz

FAO: Dr. G. Jones

Models of Computation

Sheet 2
1)

We pick q1 as the separating state: the required reg. exp. is

E<q0,q0>{q0,q1,q2} = E<q0,q0>{q0,q2} + E<q0,q1>{q0,q2} . (E<q1,q1>{q0,q2})* . E<q1,q0>{q0,q2}

By inspection, E<q0,q0>{q0,q2} = a*, E<q0,q1>{q0,q2} = a*b

The others require more work:

E<q1,q1>{q0,q2}:

Pick q0 as the separating state. Then:

E<q1,q1>{q0,q2} = E<q1,q1>{q2} + E<q1,q0>{q2} . (E<q0,q0>{q2})* . E<q0,q1>{q2}

By inspection, E<q1,q1>{q2} = ab + ε, E<q1,q0>{q2} = aa, E<q0,q0>{q2} = a + ε, E<q0,q1>{q2} = b

So:

E<q1,q1>{q0,q2} = (ab + ε) + aa . (a + ε)* . b

And the other one was:

E<q1,q0>{q0,q2}:

Pick q0 as the separating state. Then:

E<q1,q0>{q0,q2}
= E<q1,q0>{q2} + E<q1,q0>{q2} . (E<q0,q0>{q2})* . E<q0,q0>{q2}

= aa + aa . (a + ε)* . (a + ε)

So putting everything together, we have:

L(N)
= a* + a*b . ((ab + ε) + aa . (a + ε)* . b)* . (aa + aa . (a + ε)* . (a + ε))

= a* + a*b . (ab + aa . a* . b)* . (aa + aa . a* . a + aa . a*)

= a* + a*b . (ab + aaa*b)* . (aa + aaa*a + aaa*)

= a* + a*b . (a*b)* . (aaa*)

I'm not sure whether this can be simplified further?

2)

i)

Firstly, we note that F <= F. We are given that FE <= F, so taking both these things together we have F + FE <= F.

We now simply apply rule (13), taking E := E, F := F, G := F. Then:

F + FE <= F => FE* <= F

as required.

ii)

a)

=>)

From (10), we have that ε + EE* = E*. Thus EE* <= E*. Applying rule (13) with E := E, F := E*, G := E*, we have:

E* + EE* <= E* => E*E* <= E*

The LHS holds, since E* + EE* <= E* + E* <= E*, so E*E* <= E*.

<=)

We know that ε <= E*. By the laws of inequational logic, we also know that for any E, F, when E <= F, EG <= FG. So E* <= E*E*, as required.

Thus E* = E*E*.

b)

=>)

Apply rule (13), using E := E*, F := ε, G := E*. Then:

ε + E*E* <= E* => ε(E*)* <= E*

The LHS holds, since ε <= E*, and we showed in (a) that E*E* = E*, hence E*E* <= E*.

So ε(E*)* <= E*. But from rule (6), we have that ε(E*)* = (E*)* <= E*.

<=)

Apply rule (12), with:

E := E

F := ε
G := (E*)*

ε + E(E*)* <= (E*)* => E*ε <= (E*)*

The LHS holds, since ε + E(E*)* = (E*)* by rule (10), which certainly <= (E*)*. Thus E*ε <= (E*)*. But E*ε = E* by rule (6), so E* <= (E*)*

and so E* = (E*)* as required.

c)

=>)

Applying rule (10) with E := E+F, we have:

ε + (E+F)(E+F)* = (E+F)*

Then applying rule (8), we have:

ε + E(E+F)* + F(E+F)* = (E+F)*

So ε + E(E+F)* <= (E+F)*.

Applying rule (12), with E := E, F := ε and G := (E+F)*, we have:

ε + E(E+F)* <= (E+F)* => E*ε <= (E+F)*

The LHS is true, as shown above, so E*ε = E* <= (E+F)*. By identical reasoning, F* <= (E+F)* as well.

So:

E*
<= (E+F)*

E*F*
<= (E+F)*F*

{by the laws of inequational logic}

<= (E+F)*(E+F)*

{since F* <= (E+F)*}

= (E+F)*

{from part (a)}

E*F*
= (E*F*)*

{from part (b)}

So (E*F*)* <= (E+F)*

<=)

E
<= E*

Eε
<= E*ε

{by the laws of inequational logic}

<= E*F*

{since ε <= F*}

So E <= E*F*

Likewise F <= E*F*

So E + F <= E*F*

But then (E+F)* <= (E*F*)*
{by the laws of inequational logic}

And now we've proved it both ways, and can write (E*F*)* = (E+F)*.

3)

i)

Counter-example:

EF is accepted by (E+F)*, but not by E* + F*

ii)

(EF+E)* = ((EF)*E*)*

{using 2(ii)(c)}

So (EF+E)*E = ((EF)*E*)*E

(FE+E)* = ((FE)*E*)*

{again using 2(ii)(c)}

So E(FE+E)* = E((FE)*E*)*

(EF+E)(EF+E)* <= (EF+E)*

(EF+E)(EF+E)* = EF(EF+E)* + E(EF+E)*

(EF+E)* = (EF+Eε)*

{rule (6)}

 = (E(F+ε))*

{rule (7)}

 =

???

Attempt 2:

(EF+E)*E >= (EF+E)(EF+E)*E = EF(EF+E)*E + E(EF+E)*E

E(FE+E)* >= E(FE+E)*(FE+E) = E(FE+E)*FE + E(FE+E)*E

???

Attempt 3:

(EF+E)*E = (ε + (EF+E)(EF+E)*)E

{rule (10)}

 = E + EF(EF+E)*E + E(EF+E)*E
{rule (8)}

 = E + EF(EF+Eε)*E + E(EF+Eε)*E
{rule (6)}

 = E + EF(E(F+ε))*E + E(E(F+ε))*E
{rule (7)}

E(FE+E)* = E(ε + (FE+E)*(FE+E))

{rule (11)}

 = E + E(FE+E)*FE + E(FE+E)*E
{rule (7), rule (8)}

 = E + E(FE+εE)*FE + E(FE+εE)*E
{rule (6)}

 = E + E((F+ε)E)*FE + E((F+ε)E)*E
{rule (8)}

???

4)

If L is a regular language, there exists a DFA M such that L(M) = L. We construct an NFA from this to recognise LR as follows:

i) Make a note of the old start state, q0.

ii) Reverse the directions of all the transition arrows.

iii) Add a new state, q, to M, and set this to be the new start state.

iv) Add epsilon-transitions from this state to every accept state of M.

v) Make q0 an accepting state, and all the other accepting states non-accepting.

vi) If q0 was originally accepting, make q an accepting state, since the reverse of the empty string is the empty string, and should still be

accepted.

Now since if there is an NFA to recognise LR, there is a DFA to recognise LR, LR must be regular.

6)

i)

Suppose, for a contradiction, that L1 is regular. Let the pumping length be p, and let q be an arbitrary positive integer.

Take s = 0p 1q 0p (L1
Since |s| > p, by the Lemma, there are x,y,z such that s = xyz where |xy| <= p and |y| > 0. Hence x = 0a, y = 0b, where b > 0 and a+b <= p.

The Lemma further asserts: for each i >= 0, 0a 0bi 0(p-a-b) 1q 0p (L1. In particular (taking i = 0):

0a 0(p-a-b) 1q 0p = 0(p-b) 1q 0p (L1, which is a contradiction since b > 0 and hence p - b ≠ p.

ii)

We know that regular languages are closed under complement. So if L2 is regular, then so is {0n 1n : n >= 0}. But it was proved in lectures that this isn't regular (using the Pumping Lemma), so neither is L2.

iii)

Suppose, for a contradiction, that L3 is regular. Let the pumping length be p, and let q be an arbitary positive integer not equal to p.

Take s = 0p 1q (L3
Since |s| > p, by the Lemma, there are x,y,z such that s = xyz where |xy| <= p and |y| > 0. Hence x = 0a, y = 0b, where b > 0 and a+b <= p.

The Lemma further asserts: for each i >= 0, 0a 0bi 0(p-a-b) 1q (L3. In particular (taking i = 0):

0a 0(p-a-b) 1q = 0(p-b) 1q (L3
So far we don't have a contradiction, but consider what happens if we choose q = p-b. Then certainly 0p 1q (L3, since p ≠ p-b as b > 0. But

0(p-b) 1q = 0q 1q is definitely not in L3, giving us the required contradiction.

7)

i)

Anything which is not a palindrome must have length at least 2, since the empty string and all single-letter strings are palindromes. We divide it

in half (putting the extra letter in the left bit when we have an odd number of letters). We can choose the pumping length to be the length of the

whole string. Call the left side and the right side x and y, respectively, then |xy| <= p (actually |xy| = p, in this case), where p is the

pumping length. And |y| > 0, since we divided the string in two and it had at least two letters in it. Furthermore, yi is not the reverse of x.

We know that 0*y ≠ reverse x, since |x| > 0, and we know that y ≠ reverse x, since it's not a palindrome*. Since |yi| > |x| for i >= 2, we also

know that yi ≠ reverse x in general. So taking z = ε, we have that xyiz = xyi is not a palindrome, and is hence in L. In other words, all

the conditions of the Pumping Lemma are satisfied.

* When there were an odd number of letters to start with, we know this because |y| ≠ |x|.

ii)

Iff L is regular, then so is L4 = {w : w is a palindrome}, since regular languages are closed under complement. So all we have to do is prove that

L4 is not regular.

<And I’m not sure how to go about it…rats!>
iii)

No, the Pumping Lemma is only for proving that languages are not regular. Just because something satisfies the conditions of the Pumping Lemma doesn't necessarily make it regular.

8)

Reflexive -

x L x if for every string z, xz (L iff xz (L => x L x

Symmetric -

x L y => for every string z, xz (L iff yz (L => for every string z, yz (L iff xz (L => y L x

Transitive -

x L y ^ y L w => for every string z, xz (L iff yz (L ^ yz (L iff wz (L => xz (L iff wz (L => x L w

Thus L is an equivalence relation.

i)

Suppose L is recognised by M, where M has k states (i.e. L(M) = L). Then even if all the states are really distinguishable (i.e. we've got a

minimal DFA to recognise L), there are at most k distinguishable types of string in L(M), and hence in L. So the number of equivalence classes of L is at most k, i.e. the index of L is at most k.

ii)

If the index of L is a finite number k, we have k equivalence classes, which for the sake of argument we'll call:

E[1],...,E[k]

Every transition must map us from {E[1],...,E[k]} |-> {E[1],...,E[k]}, i.e. if we were in the equivalence class of a given string, either the

transition will take us to a string which is L-indistinguishable from the original (i.e. one in the same equivalence class), or it will take us

to one which is L-distinguishable (in another equivalence class). Either way, if we construct a DFA with k states, each one representing an

equivalence class, and add the transitions between them, it will recognise L. So if the index of L is a finite number k, it is recognised by a

DFA with k states.

iii)

=>)

L is regular => Some finite DFA (i.e. a finite number of states, call it k) recognises L => L has index at most k => L has finite index

<=)

L has finite index => There is some finite k such that k is the index of L => L is recognised by a DFA with k states => L is regular

Suppose the index of L were greater than the size of the smallest DFA recognising it. Let the index of L be i, and let the number of states of

the smallest DFA recognising it be k. Then k < i. But if L is recognised by a DFA with k states, L has index at most k, i.e. i <= k. This provides

the necessary contradiction, so the index of L is certainly not greater than the size of the smallest DFA recognising it. It can't be smaller,

either, because being the smallest DFA recognising it means that there is exactly one state for each equivalence class of L, so if we reduced the

number of states, there wouldn't be a state for every equivalence class, i.e. we would not be distinguishing between L-distinguishable strings.
