Stuart Golodetz





Monday 4pm-5pm






R Ranawana

Intelligent Systems I

Exercise Sheet 3
1.

1)

No. Suppose, for a contradiction, that KB (= {P(a), P(b)}) |= <for all>x P(x), i.e. in every model in which

P(a) is true and P(b) is true, <for all>x P(x) is true. Now consider the model with three identifiers a, b

and c where P(a) is true, P(b) is true and P(c) is false, i.e. KB = {P(a), P(b), ¬P(c)}. Then P(a) and P(b)

are clearly true in the model and P(c) clearly isn't, whence <for all>x P(x) clearly isn't. This is a

contradiction, so KB doesn't entail <for all>x P(x).

2)

No. For it to be valid, it would have to be true on all possible models. It's clearly not true on the empty

model, since we can't find an x or a y in that model, let alone compare them.

2.

1) Yes, the unifier is: {x/Tweety, y/Yellow}, giving Colour(Tweety,Yellow).

2) No, we'd have to replace x with both Tweety and Yellow at the same time, which isn't possible.

3) Yes, the unifier is: {y/Postman, x/Blue}, giving Colour(Hat(Postman),Blue).

4) Yes, the unifier is: {y/F(x), z/B}, giving R(F(x),B).

5) Yes, the unifier is: {y/B, x/F(B)}, giving R(F(B),F(B)).

6) Yes, the unifier is: {y/F(A), x/F(F(A)), v/F(A)}, giving: R(F(F(A)),F(A),F(F(A))).

7) Yes, the unifier is: {y/x} (or, for that matter, {x/y}), giving L(x,x) (or L(y,y), in the other case, which is the same thing).

3.

1)

<for all>x (Horse(x) -> Animal(x))

<for all>h (<there exists>x (Horse(x) ^ HeadOf(h,x)) -> <there exists>y (Animal(y) ^ HeadOf(h,y)))

2)

Negate the conclusion:

¬<for all>h (<there exists>x (Horse(x) ^ HeadOf(h,x)) -> <there exists>y (Animal(y) ^ HeadOf(h,y)))

<-> <there exists>h ¬(<there exists>x (Horse(x) ^ HeadOf(h,x)) -> <there exists>y (Animal(y) ^ HeadOf(h,y)))

<-> <there exists>h ¬(¬(<there exists>x (Horse(x) ^ HeadOf(h,x))) v <there exists>y (Animal(y) ^ HeadOf(h,y)))

<-> <there exists>h (<there exists>x (Horse(x) ^ HeadOf(h,x)) ^ ¬(<there exists>y (Animal(y) ^ HeadOf(h,y))))

<-> <there exists>h (<there exists>x (Horse(x) ^ HeadOf(h,x)) ^ <for all>y ¬(Animal(y) ^ HeadOf(h,y)))

<-> <there exists>h (<there exists>x (Horse(x) ^ HeadOf(h,x)) ^ <for all>y (¬Animal(y) v ¬HeadOf(h,y)))

Convert the premise and conclusion to conjunctive normal form:

Premise:

<for all>x (Horse(x) -> Animal(x))

<-> <for all>x (¬Horse(x) v Animal(x))
{ rewrite A -> B as ¬A v B }

<-> ¬Horse(x) v Animal(x)


{ assume x is universally quantified }

Conclusion:

<there exists>h (<there exists>x (Horse(x) ^ HeadOf(h,x)) ^ <for all>y (¬Animal(y) v ¬HeadOf(h,y)))

<-> <there exists>x (Horse(x) ^ HeadOf(H,x)) ^ <for all>y (¬Animal(y) v ¬HeadOf(H,y))
{ choose an unused name to instantiate h }

<-> Horse(X) ^ HeadOf(H,X) ^ <for all>y (¬Animal(y) v ¬HeadOf(H,y))



{ choose an unused name to instantiate x }

<-> Horse(X) ^ HeadOf(H,X) ^ (¬Animal(y) v ¬HeadOf(H,y))




{ assume y is universally quantified }

3)

We want to show that:

(¬Horse(x) v Animal(x)) ^ Horse(X) ^ HeadOf(H,X) ^ (¬Animal(y) v ¬HeadOf(H,y))

is unsatisfiable.

Well:

We instantiate ¬Horse(x) v Animal(x) with x/X, giving ¬Horse(X) v Animal(X), and resolve

it with Horse(X), giving Animal(X). We instantiate ¬Animal(y) v ¬HeadOf(H,y) with y/X,

giving ¬Animal(X) v ¬HeadOf(H,X), and resolve it with HeadOf(H,X) to give ¬Animal(X). If

we resolve ¬Animal(X) with Animal(X) we obtain a contradiction, thus the formula was

unsatisfiable and we're done.

4.

1) (Horse(x) => Mammal(x)) ^ (Cow(x) => Mammal(x)) ^ (Pig(x) => Mammal(x))

2) OffspringOf(y,x) ^ Horse(x) => Horse(y) (Note the order of the premises, it matters here!)

3) Horse(Bluebeard)

4) Parent(Bluebeard,Charlie)

5) OffspringOf(o,p) <=> Parent(p,o)

6) Mammal(x) => <there exists>y Parent(y,x)

5.

1) See separate sheet.

2) I'm not sure what the question has in mind, but one thing we can certainly say about it is that (as noted above) it makes

a serious difference whether we write OffspringOf(y,x) ^ Horse(x) => Horse(y) or Horse(x) ^ OffspringOf(y,x) => Horse(y),

since if we choose the latter then we end up in an infinite recursion when we do depth-first backward chaining, i.e. we

end up reasoning "y is a horse if x is a horse and y is the offspring of x. x is a horse if z is a horse and x is the offspring

of z. z is a horse if ..."

3) Only 2, namely h/Bluebeard or h/Charlie. We might think we'd get others, e.g. Charlie's offspring or Bluebeard's ancestors,

but in the former case, Charlie might not have offspring (if he does, they'll be horses, but that's irrelevant) and in the latter

case, whilst Bluebeard has a parent (he's a horse and therefore a mammal, and every mammal has a parent) it's not specified anywhere

that it's a horse.

4) One suggestion might be to try a breadth-first version of the backward-chaining algorithm and keep going even after we find a solution.

This should be complete, I think, because it will find any horse that can be found after a finite number of steps.
