Stuart Golodetz





Monday 4pm-5pm






R Ranawana

Intelligent Systems I

Exercise Sheet 1
1.

(a)

If another agent could do better, it would obviously have to make a different decision at some point,

so we consider whether there's a better decision which could be taken at any stage.

Suppose the agent is in a dirty square. Currently, it chooses to suck at this point.

Would it be better off doing nothing? Answer: No. If we suck, we end up with a clean square and we get a point next time,

if we do nothing we end up with a square which is still dirty and simply have to make the same decision again.

Would it be better off moving to the other square? Answer: No. The only way to get points is to clean squares. If we move to

the other square, we could potentially get a point for every time step following the next one if it's dirty and we clean it.

But if we clean this square now, we'll get a point for the next one as well! So it's better just to clean this square first.

So sucking is clearly the right thing to do if the square the agent's in is dirty.

Suppose the agent is in a clean square. Currently, it moves to the other square at this point.

Would it be better off doing nothing? Answer: It wouldn't be better. Even if the other square is clean, we've lost nothing by

moving to it (the performance measure doesn't penalise us for moving) and we can't do anything useful here. If the other square

is dirty, we can clean it and earn points.

Would it be better off sucking? Answer: No, of course not. There's no point in sucking a clean square, it's equivalent to doing

nothing.

So the agent as specified is rational.

(b)

"If we're on a dirty square, suck. If the current square is clean and we don't know whether the other square is dirty, move to it.

If we already know it's clean, stay where we are."

Yes, the agent program requires 1 bit of internal state to tell us whether the other square is dirty or not. Initially, we don't

know whether it's dirty, so we assume it is.

otherDirty = true (initialises the state)

...

Action AGENT(location, status)

{


if(status == Dirty) return Suck;


else if(otherDirty == true)


{



otherDirty = false;



if(location == A) return Right;



else if(location == B) return Left;


}


else return NoOp;

}

(c)

If we know the status of the other square then we effectively have the initial value for otherDirty. This means we never have to

move to a clean square. Previously we had to go and check whether it was clean, because we had no way of knowing, but the extra

information means we no longer need to.

(d)

If clean squares can become dirty, the agent will want to recheck the squares from time to time to see if they need cleaning again.

How often it's worth doing this depends entirely on how often the agent expects squares to become dirty again. For instance, if the

agent knew that squares would regularly become dirty every 100 steps, it could check them then and do nothing the rest of the time.

If we don't have any prior knowledge of how frequently squares become dirty when designing the agent, that would be a sensible thing

for the agent to try and learn.

So for instance, the agent could clean the squares and then check them after 1 time step. If they were dirty, it could keep doing this.

If not, it could wait 2 time steps and then see if they need cleaning. If not, it could wait 4 time steps, etc., doubling each time up

to some threshold. (I'm effectively describing something quite similar to the slow-start algorithm we learnt about in the Networks

course.) If we encounter a dirty square when we check, we reset the time before the next check to 1 time step, change the threshold to

half the time steps before we found a dirty square and start again. If we get up to the threshold without encountering dirty squares, we

then start increasing the number of time steps between checks linearly.

The "learning" done by the agent in this case is represented by the value of the threshold.

(Of course, there are other things the agent could do. It could just check every ten steps, say, though that might not be as good. But

in general it makes sense for the agent to try and learn how often squares get dirty.)

2.

(a)

Formulation:

Given states as on the separate sheet, start in state (3,3,0). Find a sequence of transitions (preferably optimal in terms of being as short as possible) as specified below such that you end up in state (0,0,1). States (m,c,b) s.t. c > m or (3-c) > (3-m) cannot appear in the sequence of states visited.
Transition CC

If b = 0, can use if c >= 2. Takes (m,c,0) to (m,c-2,1).

If b = 1, can use if c <= 1. Takes (m,c,1) to (m,c+2,0).

Transition C

If b = 0, can use if c >= 1. Takes (m,c,0) to (m,c-1,1).

If b = 1, can use if c <= 2. Takes (m,c,1) to (m,c+1,0).

Transition MC

If b = 0, can use if m >= 1 and c >= 1. Takes (m,c,0) to (m-1,c-1,1).

If b = 1, can use if m <= 2 and c <= 2. Takes (m,c,1) to (m+1,c+1,0).

Transition M

If b = 0, can use if m >= 1. Takes (m,c,0) to (m-1,c,1).

If b = 1, can use if m <= 2. Takes (m,c,1) to (m+1,c,0).

Transition MM

If b = 0, can use if m >= 2. Takes (m,c,0) to (m-2,c,1).

If b = 1, can use if m <= 1. Takes (m,c,1) to (m+2,c,0).

Diagram: See separate sheet.

(b)

Solve using breadth-first search, maintaining a list of repeated states (it's clearly a good idea to keep

such a list given that all moves which don't result in failure are reversible). Note that it's sensible to

only add non-failure states, not least because adding all the failure states and then checking them later

would make this answer unnecessarily long.

Queue



Seen

(3,3,0)



-

(2,2,1), (3,2,1), (3,1,1)

(3,3,0)

(3,2,1), (3,1,1), (3,2,0)

(3,3,0), (2,2,1)

(3,1,1), (3,2,0)


(3,3,0), (2,2,1), (3,2,1)

(3,2,0)



(3,3,0), (2,1,1), (3,2,1), (3,1,1)

(3,0,1)



(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0)

(3,1,0)



(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0), (3,0,1)

(1,1,1)



(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0), (3,0,1), (3,1,0)

(2,2,0)



(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0), (3,0,1), (3,1,0), (1,1,1)

(0,2,1)



(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0), (3,0,1), (3,1,0), (1,1,1), (2,2,0)

(0,3,0)



(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0), (3,0,1), (3,1,0), (1,1,1), (2,2,0), (0,2,1)

(0,1,1)



(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0), (3,0,1), (3,1,0), (1,1,1), (2,2,0), (0,2,1), (0,3,0)

(1,1,0), (0,2,0)


(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0), (3,0,1), (3,1,0), (1,1,1), (2,2,0), (0,2,1), (0,3,0), (0,1,1)

(0,2,0), (0,0,1)


(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0), (3,0,1), (3,1,0), (1,1,1), (2,2,0), (0,2,1), (0,3,0), (0,1,1), (1,1,0)

(0,0,1)



(3,3,0), (2,1,1), (3,2,1), (3,1,1), (3,2,0), (3,0,1), (3,1,0), (1,1,1), (2,2,0), (0,2,1), (0,3,0), (0,1,1), (1,1,0), (0,2,0)

GOAL

So the sequence is: MC, M, CC, C, MM, MC, MM, C, CC, M, MC, where each of those represents a move from the current bank to the opposite bank. So, for instance, the first move is "move a missionary and a cannibal to the other side", the second is "bring the missionary back", etc.

Our sequence looks like:

Start Bank

Goal Bank

MMMCCC

-

MMCC

MC

MMMCC

C

MMM


CCC

MMMC

CC

MC


MMCC

MMCC

MC

CC


MMMC

CCC


MMM

C


MMMCC

MC


MMCC

-


MMMCCC

(c)

People have a hard time solving the problem because they get caught in the initial loop and keep ending up

back where they started. You have to make sure to do CC in state (3,2,0) or you'll never solve the problem.

There are also in general a lot of extraneous states which you can't go to without failing, so people have

to keep checking that they don't end up in one of them (even if there's only one thing you can actually do,

people have to check all the other possibilities to see that). You can also always backtrack, though you

only ever have to if you made a mistake in the first place. This adds a pointless option to consider each

time.

An additional point is that the search space is effectively 3-dimensional, as the states definition shows

(number of missionaries, number of cannibals and where the boat is are each dimensions).

3.

Prove that uniform-cost search and breadth-first search with constant steps are optimal

when used with the GRAPH-SEARCH algorithm in lecture 3. (Also see p.83 of the text book).

Show a state space with constant step costs in which GRAPH-SEARCH using iterative-deepening

finds a suboptimal solution.

Answer:

(i)

Uniform-Cost Search

{Begin Lemma}

The nodes are visited in non-decreasing order of path cost.

Proof:

Trivial - we always make a local decision to visit a node with a lower path cost first, so

there's no way a node with a higher path cost could have been visited first.

(It would suffice to show that, at all times, nodes on the queue have a higher path cost

than any node visited so far. This is fairly trivial. Suppose, for a contradiction, that

there is a node n on the queue which has a lower path cost than some previously-visited

node p. Then it cannot have been on the queue when p was expanded, for otherwise it would

have been visited first. So it must have been added after p. If it was added, it was

adjacent to some queue node m which was expanded. If this node had a higher path cost than

p, then so would n (a contradiction), so we assume that it had a lower path cost than p.

But then m too couldn't have been on the queue when p was expanded, for otherwise it would

have been visited first and n would have been on the queue when p was expanded (we can

discount the possibility that n was visited before p and was hence not on the queue any

more, since we assumed originally that n was on the queue after p had been expanded). If m

wasn't on the queue when p was expanded, then we could look at the node whose expansion

puts it on the queue and conclude that that too couldn't be on the queue when p was expanded.

If we keep doing this recursively, we must conclude that our original assumption was false.)

{End Lemma}

{Begin Lemma}

When we visit a graph node for the first time, we have reached it by a shortest path to it

from the start node (i.e. there is no shorter path to it).

Proof (by induction):

Base Case

We visit the start node immediately. The path to it thus has length 0, which is clearly as

short as you can get (path costs are positive).

Hypothesis

The first time each previously-visited node was visited, it was reached by a shortest path

to it from the start node.

Step

RTP: Hypothesis -> The next (as yet unvisited) node to be visited will be reached by a shortest

path to it from the start node

Any path to the unvisited node must have as its penultimate node one of the unvisited node's adjacent nodes.

Each of these has either been visited already or not.

Consider an unvisited adjacent node u. Either u is adjacent to an already visited node, or it isn't.

If it isn't, it can be excluded from consideration since it must be further away than the next node to

be visited and hence no shortest path to the next node can pass through it. If it is adjacent to an

already visited node, it can also be excluded because the only way going through it could produce a

better path to the next node to be visited is if its path cost would have been lower than the next node,

when it would have been considered first by definition.

So we only need to worry about visited adjacent nodes. By hypothesis, the path to each of these was

a shortest one from the start node. If we call the path lengths of the m visited nodes l[1], ..., l[m]

and the step costs from the respective nodes to the next node to be visited s[1], ..., s[m], we simply

have to choose i s.t. for all j, l[i] + s[i] <= l[j] + s[j], to guarantee that the path from the start

node, through i, to the next node to be visited is a shortest path to it from the start node. In other

words, when we add the next node to the priority queue, it will have the path cost l[i] + s[i].

QED

{End Lemma}

So we know that when we get to a goal node, we've found the optimal path to it. We also know that

we will end up visiting goal nodes with shorter path costs before those with longer ones. Thus we

come to the goal node which has a shortest path cost first and the path we've found to it is optimal,

so we always find the optimal solution and hence uniform-cost search is optimal when used with the

GRAPH-SEARCH algorithm.

(ii)

Breadth-First Search with Constant Steps

{Begin Lemma}

The nodes are visited in non-decreasing order of path cost.

Proof:

Suppose the constant step cost is c. By the nature of BFS, we visit the start node first, then nodes

one step away from the start (path cost: c), then nodes two steps away (path cost: 2c), etc. Clearly

the path cost increases the further away we get from the start node, and since we visit all the nodes

which are a given (minimum) number of steps away before considering those which are at least one step

further away, the path cost for nodes is always non-decreasing.

{End Lemma}

{Begin Lemma}

When we visit a graph node for the first time, we have reached it by a shortest path to it

from the start node (i.e. there is no shorter path to it).

Suppose the minimum number of steps from the start to the node is s, then it will get added

to the queue when we expand nodes whose minimum number of steps from the start is s-1. It

will be considered when we consider nodes with minimum number of steps s, at which stage

we will obviously have come to it by a shortest path, since we've come to it by a minimum

number of steps and each step has a constant cost.

{End Lemma}

These two lemmas give us the same final result as for UCS above.

(iii)

Try as I might, I can’t come up with a state space with constant step costs such that iterative-deepening search finds a suboptimal solution. I thought about a node with two paths to it, one of which has it farther down the tree than the other, but even supposing it’s to the left (in the tree) of the other (shorter) path and thus gets processed first in subsequent iterations, if there was some path from it to the goal of any length, the goal would be found using the shorter path on an earlier iteration – I’m confused!
4.

Consider the state space on the separate sheet. Depth-first search would find a path

from the start to the goal after 5 steps, iterative-deepening would have to investigate

all the paths of lengths 1 to 4 first.

Obviously the length of the path from the start to the goal is arbitrary, it doesn't have

to be 5. Let's say it's actually length m. Then DFS requires m steps and IDS requires:

n + 2n + 3n + ... + (m-1)n + m steps, i.e. O(mn) steps

If m = O(n), this gives us the same as the example, namely that DFS requires O(n) steps and

IDS requires O(n^2) steps.

5.

Trace the operation of A* search applied to the problem of getting to Bucharest from Lugoj

using the straight-line distance heuristic. That is, show the sequence of nodes that the

algorithm will consider, and the f, g and h score for each node.

Answer:



g
h
f

(Priority) Queue







Lugoj (0+244=244)

Lugoj

0
244
244

Mehadia (70+241=311), Timisoara (111+329=440)

Mehadia
70
241
311

Dobreta (145+242=387), Timisoara (440)

Dobreta
145
242
387

Craiova (265+160=425), Timisoara (440)

Craiova
265
160
425

Timisoara (440), Pitesti (403+100=503), Rimnicu Vikea (411+193=604)

Timisoara
111
329
440

Pitesti (503), Arad (229+366=595), Rimnicu Vikea (604)

Pitesti

403
100
503

FOUND BUCHAREST (504+0=504)

Path: Lugoj -> Mehadia -> Dobreta -> Craiova -> Pitesti -> Bucharest
