FUNCTIONAL PROGRAMMING
Practical 2: Mazes – Report
by Stuart Golodetz
Introduction
The aim of this practical report is to list and explain the code written to solve the various questions. It is presented in two sections: the first presents the code with interspersed comments, the second is an appendix containing some utility functions written to make testing a little easier.
Code Section
Question 1

> opposite :: Direction -> Direction

> opposite N = S

> opposite S = N

> opposite E = W

> opposite W = E

> move :: Direction -> Place -> Place

> move N (i,j) = (i,j+1)

> move S (i,j) = (i,j-1)

> move E (i,j) = (i+1,j)

> move W (i,j) = (i-1,j)

Listing 1
Question 2

> drawMaze :: Maze -> IO()

> drawMaze maze = putStr (concatMap (\s -> s ++ "\n") rowList)

>
where

>

lineList = reverse [0..(2 * snd (sizeOf maze))]

>

rowList = map (\n -> if (n `mod` 2 /= 0) then drawRowEW maze (n `div` 2) 0 else drawRowNS maze (n `div` 2) 0) lineList

Listing 2.1
The definition of drawMaze above deserves a little explanation: We first make a list of all the numbers from twice the height of the maze down to zero (since the number of north-south rows plus the number of east-west rows is twice the height of the maze + 1). We reverse this (since north is upwards - i.e. the bottom row is 0, the next row up is 1, etc.) Now we convert this list of numbers to a list of strings, given by drawing the rows using the functions below. The corresponding row to draw for a number n in the list is (n `div` 2), thus we pass this as the j parameter to each of the draw row functions. We draw starting from the left-most column in each case (which has index 0, hence the other parameter we pass in).

> drawRowEW :: Maze -> Int -> Int -> String

> drawRowEW maze j i

>
| hasWall maze (i,j) W
= "| " ++ rest

>
| otherwise

= " " ++ rest

>
where rest = if i == fst (sizeOf maze) - 1 then "|" else drawRowEW maze j (i+1)

Listing 2.2
The drawRowEW function is relatively straightforward. We check whether or not the current square has a left wall, and if so we draw | to represent the wall, otherwise we don't. We then append the result of drawing the rest of the row to this and return the final string. Note that rest is defined so that when we reach the end of the row, we simply draw the east boundary rather than recursing.

> drawRowNS :: Maze -> Int -> Int -> String

> drawRowNS maze j i

>
| hasWall maze (i,j) S
= "+--" ++ rest

>
| otherwise

= "+ " ++ rest

>
where rest = if i == fst (sizeOf maze) - 1 then "+" else drawRowNS maze j (i+1)

Listing 2.3
The drawRowNS function is essentially identical to the drawRowEW function, except that it draws north-south rows instead of east-west ones.

Sample Runs:

Main> drawMaze smallMaze

+--+--+--+--+

| | | |

+ +--+ + +

| | |

+--+ + + +

| | |

+--+--+--+--+

(8303 reductions, 12311 cells)

Main> drawMaze largeMaze

+--+

| | | | | | |

+ +--+--+--+--+--+--+ + + +--+--+--+ + + + + + + +--+--+--+

| | | | | | | | | | | | | |

+--+--+--+--+--+--+ + + + + +--+--+--+ + + + + + + + + +

| | | | | | | | | | | | | |

+ +--+--+--+--+--+--+ + + + + +--+--+ + + + +--+--+ + + +

| | | | | | | | | | | | | |

+--+--+ + +--+--+--+ +--+ + + + +--+--+--+ +--+--+--+ + + +

| | | | | | | | | | | |

+ + + +--+--+--+ +--+--+--+--+--+ + + + +--+ + +--+--+ + +

| | | | | | | | | | | | | |

+ + +--+ + + + + +--+--+--+--+--+ + + + +--+--+--+ + + +

| | | | | | | | | | | | | |

+ +--+--+--+ + + +--+--+--+ + +--+ + + +--+ + +--+--+--+--+

| | | | | | | | | | |

+--+--+--+--+--+ + + +--+--+--+ + + + +--+--+--+--+--+--+--+ +

| | | | | | | |

+ +--+--+--+--+--+--+ + +--+--+--+ + +--+--+--+--+--+--+--+ + +

| | | | | | | | |

+--+--+--+ +--+--+ + +--+--+--+ + +--+--+ + +--+--+--+--+--+ +

| | | | | | | | | | |

+ +--+--+--+ + + + + + + + + + + + +--+--+--+--+--+--+--+

| | | | | | | | | | | | | |

+--+--+--+ + + + + + + + + + + + + +--+--+--+--+--+--+ +

| | | | | | | | | | | | | | | | |

+ +--+--+--+ + + + + + + + + + +--+--+--+ + + + + + +

| | | | | | | | | | | | | | | |

+ + + + + +--+--+--+--+--+ + + +--+--+--+ + + + + +--+--+

| | | | | | | | | | | | |

+ + + + +--+--+ + +--+--+--+ +--+--+--+ + +--+--+--+--+ + +

| | | | | | | | | | | | | |

+ + + + + + + +--+--+--+ + + + + + + + +--+--+--+--+ +

| | | | | | | | | | | | | | | |

+ + +--+ + + + + +--+--+--+--+ + + + +--+--+ + + + +--+

| | | | | | | | | | | | | | |

+ +--+ + + + +--+--+--+--+--+ + + + +--+--+--+ + + +--+ +

| | | | | | | | | | | |

+ + + + + +--+--+--+ + + + +--+--+--+--+--+--+--+ +--+--+--+

| | | | | | | | | | |

+ + + + + + +--+--+--+ + +--+--+--+--+--+--+--+ +--+--+ + +

| | | | | | | | | | |

+ + + + +--+--+--+--+ + +--+--+--+--+--+--+--+--+--+--+--+--+ +

| | | | |

+--+

(7950728 reductions, 10944489 cells, 47 garbage collections)

Sample Runs 2.4
Question 3

> solveMaze :: Maze -> Place -> Place -> Path

> solveMaze maze start target = reverse (solveMazeIter maze target [(start, [])])

Listing 3.1
There are a couple of important points to note about the solveMaze function. Firstly, we have to initialise the list of partial solutions with the start and an empty direction list (since to get from the start to the start, we don't have to go anywhere (clearly)). Secondly, we have to reverse the list of directions returned by solveMazeIter, since for efficiency reasons we prefer to add to the front of the list in solveMazeIter.

> solveMazeIter :: Maze -> Place -> [(Place, Path)] -> Path

> solveMazeIter maze target (((x,y), path):solutions)

>
| target == (x,y)
= path

>
| otherwise

= solveMazeIter maze target (solutions ++ lengthenPath ((x,y), path))

>
where

>

lengthenPath :: (Place, Path) -> [(Place, Path)]

>

lengthenPath ((x,y), path) = northPath ++ southPath ++ eastPath ++ westPath

>

where

>

northPath = if hasWall maze (x,y) N then [] else [((x,y+1), N:path)]

>

southPath = if hasWall maze (x,y) S then [] else [((x,y-1), S:path)]

>

eastPath = if hasWall maze (x,y) E then [] else [((x+1,y), E:path)]

>

westPath = if hasWall maze (x,y) W then [] else [((x-1,y), W:path)]

Listing 3.2
The solveMazeIter function works as follows: If the first partial solution is in fact a complete solution, then we return the path found. Otherwise, we recurse by removing the first partial solution and appending between zero and four possible longer paths to the end of the partial solution list (formed by extending the first partial solution in each of the four directions). The local lengthenPath function returns the (possibly empty) list of (longer) partial solutions formed from the first partial solution in this way.

Sample Run:

Main> solveMaze smallMaze (0,0) (3,2)

[E,N,E,S,E,N,N]

(53340 reductions, 85024 cells)

Sample Run 3.3
Question 4

> fastSolveMaze :: Maze -> Place -> Place -> Path

> fastSolveMaze maze start target = reverse (fastSolveMazeIter maze target [(start, [])] [start])

Listing 4.1
The only real difference between this function and the solveMaze function (above) is that we have to initialise the visited list with the start location. Otherwise, the same comments as before apply to this function.

> fastSolveMazeIter :: Maze -> Place -> [(Place, Path)] -> [Place] -> Path

> fastSolveMazeIter _ _ [] _
= error "No solution"

> fastSolveMazeIter maze target (((x,y), path):solutions) visited

>
| target == (x,y)
= path

>
| otherwise

= fastSolveMazeIter maze target (solutions ++ longerPaths) newVisited

>
where

>

lengthenPath :: (Place, Path) -> [(Place, Path)]

>

lengthenPath ((x,y), path) = ifNotVisited northPath ++ ifNotVisited southPath ++ ifNotVisited eastPath ++ ifNotVisited westPath

>

where

>

northPath = if hasWall maze (x,y) N then [] else [((x,y+1), N:path)]

>

southPath = if hasWall maze (x,y) S then [] else [((x,y-1), S:path)]

>

eastPath = if hasWall maze (x,y) E then [] else [((x+1,y), E:path)]

>

westPath = if hasWall maze (x,y) W then [] else [((x-1,y), W:path)]

>

>

ifNotVisited :: [(Place, Path)] -> [(Place, Path)]

>

ifNotVisited [] = []

>

ifNotVisited [(place,path)] = if elem place visited then [] else [(place,path)]

>

>

longerPaths = lengthenPath ((x,y), path)

>

newVisited = visited ++ [place | (place,_) <- longerPaths]

Listing 4.2
The fastSolveMazeIter function needs a little bit of explanation. Firstly, we note that if we run out of partial solutions (which is guaranteed if the maze is impossible, since we never revisit places in the visited list), then there is no solution. This correctly returns an error message for the impossibleMaze:

> fastSolveMazeBLTR :: Maze -> Path

> fastSolveMazeBLTR maze = fastSolveMaze maze (0,0) (x-1,y-1)

>
where (x,y) = sizeOf maze

Sample Run:

Main> fastSolveMazeBLTR impossibleMaze

Program error: No solution

(6932 reductions, 10608 cells)

Listing and Sample Run 4.3
Note that the fastSolveMazeBLTR function simply tries to find a path from the bottom-left of a maze to the top-right. This saves us from having to type in the coordinates all the time.

Returning to our explanation of fastSolveMazeIter, the function is reasonably similar to solveMazeIter. The major difference is that before adding our extended paths to the end of the list, we check whether we've already visited the place to which each path goes, and if so we don't bother adding it to the end of the partial solution list. Note that our new visited list includes the place to which our original partial solution took us (before we extended it).

Sample Runs:

Main> fastSolveMazeBLTR smallMaze

[E,N,E,S,E,N,N]

(10871 reductions, 16464 cells)

Main> fastSolveMazeBLTR largeMaze

[N,N,N,N,N,N,N,N,N,E,E,E,N,W,W,W,N,E,E,E,N,W,W,W,N,E,E,E,E,E,N,N,N,W,S,S,W,W,W,W,N,N,N,E,S,S,E,E,N,W,N,N,W,W,N,E,E,E,E,E,E,N,W,W,W,W,W,W,N,E,E,E,E,E,E,E,S,S,S,S,E,E,N,N,N,N,E,E,E,E,S,W,W,W,S,S,S,E,N,N,E,E,E,S,W,W,S,S,W,W,W,W,W,S,E,E,E,S,W,W,W,S,S,S,E,S,S,S,E,N,N,N,E,S,S,S,S,W,W,W,S,E,E,E,S,W,W,W,S,E,E,E,E,S,S,E,E,E,E,E,E,E,S,E,E,E,N,W,W,N,N,N,E,S,S,E,E,N,W,N,E,N,N,W,S,W,W,W,W,S,W,N,N,N,W,W,W,N,N,N,E,S,S,E,N,N,N,W,W,N,N,N,N,N,E,S,S,S,S,E,E,E,E,E,E,E,S,W,W,W,W,W,S,E,E,E,E,E,E,N,N,N,W,W,W,W,N,E,E,N,W,W,N,E,E,N,W,W,W,N,N,N,E,S,S,E,N,N,E,E,E]

(14984671 reductions, 20762548 cells, 90 garbage collections)

Sample Runs 4.4
Question 5

> data Maze = AMaze Size [Place] [Place] [Place] [Place]

> separateWalls :: [Wall] -> ([Place],[Place],[Place],[Place])

> separateWalls [] = ([],[],[],[])

> separateWalls ((place,direction):walls)

>
| direction == N

= (place:nWalls,(x,y+1):sWalls,eWalls,wWalls)

>
| direction == S

= ((x,y-1):nWalls,place:sWalls,eWalls,wWalls)

>
| direction == E

= (nWalls,sWalls,place:eWalls,(x+1,y):wWalls)

>
| otherwise

= (nWalls,sWalls,(x-1,y):eWalls,place:wWalls)

>
where

>

(nWalls,sWalls,eWalls,wWalls) = separateWalls walls

>

(x,y) = place

Listing 5.1
The separateWalls function simply separates the walls into a quadruple of four lists containing the walls which face north, south, east and west respectively. Note that we are also adding the reflected walls to the opposite lists at the same time.

> makeMaze :: Size -> [Wall] -> Maze

> makeMaze (x,y) walls = AMaze (x,y) northWalls southWalls eastWalls westWalls

>
where

>

northWalls = northBoundaries ++ nWalls

>

southWalls = southBoundaries ++ sWalls

>

eastWalls = eastBoundaries ++ eWalls

>

westWalls = westBoundaries ++ wWalls

>

>

(nWalls,sWalls,eWalls,wWalls) = separateWalls walls

>

>

northBoundaries = [(i,y-1) | i <- [0..x-1]] ++ [(i,-1) | i <- [0..x-1]]

>

southBoundaries = [(i,0) | i <- [0..x-1]] ++ [(i,y) | i <- [0..x-1]]

>

eastBoundaries = [(x-1,j) | j <- [0..y-1]] ++ [(-1,j) | j <- [0..y-1]]

>

westBoundaries = [(0,j) | j <- [0..y-1]] ++ [(x,j) | j <- [0..y-1]]

Listing 5.2
The makeMaze function makes the maze by adding the boundaries to the lists of walls returned by separateWalls.

> hasWall :: Maze -> Place -> Direction -> Bool

> hasWall (AMaze _ nWalls sWalls eWalls wWalls) place direction

>
| direction == N

= elem place nWalls

>
| direction == S

= elem place sWalls

>
| direction == E

= elem place eWalls

>
| otherwise

= elem place wWalls

Listing 5.3
The hasWall function just tests whether a wall is in the appropriate list. Note that the time taken is O(n), where n is the length of the list in question.

> sizeOf :: Maze -> Size

> sizeOf (AMaze size _ _ _ _) = size

Listing 5.4
	Expression
	Initial Representation
	New Representation

	drawMaze smallMaze
	(8303 reductions, 12311 cells)
	(2721 reductions, 4532 cells)

	drawMaze largeMaze
	7950728 reductions, 10944489 cells, 47 garbage collections)
	(1359807 reductions, 1838509 cells, 8 garbage collections)

	solveMaze smallMaze (0,0) (3,2)
	(53340 reductions, 85024 cells)
	(18281 reductions, 35857 cells)

	fastSolveMazeBLTR smallMaze
	(10871 reductions, 16464 cells)
	(3896 reductions, 6691 cells)

	fastSolveMazeBLTR largeMaze
	(14984671 reductions, 20762548 cells, 90 garbage collections)
	(4349058 reductions, 6058034 cells, 26 garbage collections)

Comparing the representations 5.4
The second representation needs significantly fewer reductions in general than the first. It is also hugely faster to solve the large maze with the second representation (though without a stop-watch, providing exact times is problematic – suffice to say that the difference is clearly noticeable).

Question 6

> data Tree a = Nil | Node a (Tree a) (Tree a)

> insertIntoBST :: Ord a => a -> Tree a -> Tree a

> insertIntoBST x Nil = Node x Nil Nil

> insertIntoBST x (Node y left right)

>
| x < y

= Node y (insertIntoBST x left) right

>
| x > y

= Node y left (insertIntoBST x right)

>
| otherwise
= Node y left right
-- ignore duplicates

Listing 6.1
The insertIntoBST function works as follows: If the tree is empty, we simply set the root node equal to x (the left and right subtrees of the root will be empty). Otherwise, we recurse down the tree and insert x into a position in the tree such that an in-order walk of the tree would produce the inserted elements in an order determined by < for the type a.

> makeBST :: Ord a => [a] -> Tree a

> makeBST [] = Nil

> makeBST (x:xs) = insertIntoBST x (makeBST xs)

Listing 6.2
The makeBST function inserts the elements of the list into an initially empty tree, one at a time. Note that this could have been alternatively written:

makeBST = foldr insertIntoBST Nil
> elemBST :: Ord a => a -> Tree a -> Bool

> elemBST x Nil = False

> elemBST x (Node y left right)

>
| x < y

= elemBST x left

>
| x > y

= elemBST x right

>
| x == y

= True
>
| otherwise
= False

Listing 6.3
The elemBST function checks whether an element is in the tree. We recurse from the root node down.

> type PlaceTree = Tree Place

> data Maze = BSTMaze Size PlaceTree PlaceTree PlaceTree PlaceTree

Listing 6.4
Note: The makeMaze function shown in the following listing has been subsequently modified to use the balanced tree implementation. To see the old version, simply change all occurrences of makeBalancedBST to makeBST. The comments which follow are written as if the change had not yet been made.
> makeMaze :: Size -> [Wall] -> Maze

> makeMaze size walls = BSTMaze size (makeBalancedBST nWalls) (makeBalancedBST sWalls) (makeBalancedBST eWalls) (makeBalancedBST wWalls)

>
where (MyMaze.AMaze _ nWalls sWalls eWalls wWalls) = MyMaze.makeMaze size walls

> hasWall :: Maze -> Place -> Direction -> Bool

> hasWall (BSTMaze _ nWalls sWalls eWalls wWalls) place direction

>
| direction == N

= elemBST place nWalls

>
| direction == S

= elemBST place sWalls

>
| direction == E

= elemBST place eWalls

>
| otherwise

= elemBST place wWalls

> sizeOf :: Maze -> Size

> sizeOf (BSTMaze size _ _ _ _) = size

Listing 6.5
The above code is mostly straightforward, but it is worth noting that we build this representation of a maze by building the four-list representation and then converting the lists to binary search trees.
As suggested on the sheet, the trees at the moment aren't particularly balanced. We are going to sort the list of places (as advised), only we need to be a bit cunning about it. Consider the following list:

1 2 3 4 5 6 7
If we build a tree from it as it stands, it will be perfectly unbalanced (i.e. it will have 7 at the root, with left child 6, with left child 5, etc.) If we sort it as follows, however, it will be perfectly balanced (note that we insert elements into the tree from right to left):

7 5 6 3 1 2 4

In other words we want to insert elements into the tree in the following order:
4 2 1 3 6 5 7
(Note that this in fact a pre-order walk of the balanced tree we want to build.)

Proceeding to the code:

> rearrangeList :: Ord a => [a] -> [a]

> rearrangeList [] = []

> rearrangeList xs = x:(rearrangeList left ++ rearrangeList right)

>
where

>

(left,x:right) = splitAt (length xs `div` 2) xs

> quicksort :: Ord a => [a] -> [a]

> quicksort [] = []

> quicksort (x:xs) = quicksort [y | y <- xs, y < x] ++ [x] ++ quicksort [y | y <- xs, y > x]

> makeBalancedBST :: Ord a => [a] -> Tree a

> makeBalancedBST xs = makeBST (reverse (rearrangeList (quicksort xs)))

Listing 6.6
The above quicksort function is completely standard and as such there is little to be said about it. The makeBalancedBST function is fairly simple; the only point of note is that we reverse the list returned by rearrangeList because makeBST inserts elements into an empty tree starting from the end of the list (it is a foldr). The rearrangeList function simply takes the middle element (or the rightmost middle element, when the list is of even length) out, rearranges the sublists on either side of it and puts it on the front of the result of appending the two rearranged sublists together.
For comparison with previous representations, here are the results of evaluating the same expressions as before:

	Expression
	Result

	drawMaze smallMaze
	(2970 reductions, 5688 cells)

	drawMaze largeMaze
	(178542 reductions, 316803 cells, 1 garbage collection)

	solveMaze smallMaze (0,0) (3,2)
	(19582 reductions, 43869 cells)

	fastSolveMazeBLTR smallMaze
	(4177 reductions, 8303 cells)

	fastSolveMazeBLTR largeMaze
	(1995858 reductions, 3024958 cells, 13 garbage collections)

Comparing the representations 6.7
There are in general significantly fewer reductions required when using the new representation.
Question 7
> staircaseMaze :: Int -> Maze

> staircaseMaze n = makeMaze (n,n) (staircaseWalls n)

>
where

>

staircaseWalls :: Int -> [Wall]

>

staircaseWalls 1 = [((0,0),W),((0,0),N)]

>

staircaseWalls (n+1) = ((n,n),W):((n,n),N):staircaseWalls n

Listing 7.1
The above function makes a simple square staircase maze. Here is a sample run:
drawMaze (staircaseMaze 5)

+--+--+--+--+--+

| | |

+ + + +--+ +

| | |

+ + +--+ + +

| | |

+ +--+ + + +

| | |

+--+ + + + +

| |

+--+--+--+--+--+
Sample Run 7.2
> whirlWalls :: Place -> Direction -> [Wall] -> Bool -> [Wall]

> whirlWalls (x,y) direction walls justChangedDirection

>
| elem ((x,y), direction) walls
= if justChangedDirection then walls else whirlWalls (x,y) (next direction) walls True

>
| otherwise

= if justChangedDirection then whirlWalls (move direction (x,y)) direction walls False

>

 else whirlWalls (move direction (x,y)) direction (wall:oppositeWall:walls) False

>
where

>

next :: Direction -> Direction

>

next N = E

>

next E = S

>

next S = W

>

next W = N

>

>

wall = ((x,y),next direction)

>

oppositeWall = (move (next direction) (x,y),opposite (next direction))

> whirlMaze :: Int -> Int -> Maze

> whirlMaze w h = makeMaze (w,h) (whirlWalls (0,0) N boundaries False)

>
where boundaries =

>

[((0,j), W) | j <- [0..h-1]] ++ [((-1,j), E) | j <- [0..h-1]] ++

-- west boundary

>

[((w-1,j), E) | j <- [0..h-1]] ++ [((w,j), W) | j <- [0..h-1]] ++

-- east boundary

>

[((i,0), S) | i <- [0..w-1]] ++ [((i,-1), N) | i <- [0..w-1]] ++

-- south boundary

>

[((i,h-1), N) | i <- [0..w-1]] ++ [((i,h), S) | i <- [0..w-1]]

-- north boundary

Listing 7.3
The above is going to need some explanation, but first it is worth examining a few sample runs to see the end result:
drawMaze (whirlMaze 1 1)

+--+

| |

+--+

drawMaze (whirlMaze 2 2)

+--+--+

| |

+ + +

| | |

+--+--+

drawMaze (whirlMaze 3 3)

+--+--+--+

| |

+ +--+ +

| | | |

+ + + +

| | |

+--+--+--+

drawMaze (whirlMaze 4 4)

+--+--+--+--+

| |

+ +--+--+ +

| | | |

+ + + + +

| | | | |

+ + +--+ +

| | |

+--+--+--+--+

drawMaze (whirlMaze 5 5)

+--+--+--+--+--+

| |

+ +--+--+--+ +

| | | |

+ + +--+ + +

| | | | | |

+ + + + + +

| | | | |

+ + +--+--+ +

| | |

+--+--+--+--+--+

drawMaze (whirlMaze 10 5)

+--+--+--+--+--+--+--+--+--+--+

| |

+ +--+--+--+--+--+--+--+--+ +

| | | |

+ + +--+--+--+--+--+--+ + +

| | | | | |

+ + + +--+--+--+--+--+ + +

| | | | |

+ + +--+--+--+--+--+--+--+ +

| | |

+--+--+--+--+--+--+--+--+--+--+
Sample Runs 7.4
The way the mazes are constructed is actually relatively straightforward. We start off by going north from (0,0), adding east walls until we get to the top, when we start going east, adding south walls until we get to the right, and so on. If we get to a point where we need to change directions (where there is already a wall in the direction we’re going, i.e. when we reach the top there is a wall to the north), we turn right and try to keep going. If we’ve only just changed directions, we must be at the centre of the maze, in which case we return the walls we’ve added so far, otherwise we keep going. Note that we add the corresponding opposite-facing walls while we’re doing this; if we didn’t, checking for walls while we’re building the maze wouldn’t work properly.
> data Facing = LeftF | RightF

>
deriving Eq

> interlockingMazeWalls :: Int -> Int -> (Int,Int) -> Facing -> [Wall]

> interlockingMazeWalls w 1 (xShift,yShift) facing = boundaries

>
where

>

boundaries =

>

vertBorder :

>

[((i+xShift,yShift), S) | i <- [0..w-1]] ++

-- south boundary

>

[((i+xShift,yShift), N) | i <- [0..w-1]]

-- north boundary

>

vertBorder = if facing == LeftF then ((xShift,yShift), W) else ((w+xShift-1,yShift), E)

> interlockingMazeWalls w 2 (xShift,yShift) LeftF = [((i+xShift,yShift), N) | i <- [1..w-1]] ++ vertBorder ++ outerWalls

>
where

>

vertBorder = [((xShift,j+yShift), W) | j <- [0,1]]

>

outerWalls = [((i+xShift,1+yShift), N) | i <- [0..w-1]] ++ [((i+xShift,yShift), S) | i <- [0..w-1]]

> interlockingMazeWalls w 2 (xShift,yShift) RightF = [((i+xShift,yShift), N) | i <- [0..w-2]] ++ vertBorder ++ outerWalls

>
where

>

vertBorder = [((w+xShift-1,j+yShift), E) | j <- [0,1]]

>

outerWalls = [((i+xShift,1+yShift), N) | i <- [0..w-1]] ++ [((i+xShift,yShift), S) | i <- [0..w-1]]

> interlockingMazeWalls w h (xShift,yShift) LeftF = outerWalls ++ interlockingMazeWalls (w-1) (h-2) (1+xShift,1+yShift) RightF

>
where

>

outerWalls = horizWalls ++ vertWall

>

horizWalls = [((i+xShift,yShift), S) | i <- [0..w-1]] ++ [((i+xShift,h+yShift-1), N) | i <- [0..w-1]]

>

vertWall = [((xShift,j+yShift), W) | j <- [0..h-1]]

> interlockingMazeWalls w h (xShift,yShift) RightF = outerWalls ++ interlockingMazeWalls (w-1) (h-2) (xShift,1+yShift) LeftF

>
where

>

outerWalls = horizWalls ++ vertWall

>

horizWalls = [((i+xShift,yShift), S) | i <- [0..w-1]] ++ [((i+xShift,h+yShift-1), N) | i <- [0..w-1]]

>

vertWall = [((w+xShift-1,j+yShift), E) | j <- [0..h-1]]

> interlockingMaze :: Int -> Int -> Maze

> interlockingMaze w h = makeMaze (w,h) (interlockingMazeWalls w h (0,0) RightF)
Listing 7.5
The above code constructs interlocking mazes, as shown by the following sample runs:
drawMaze (interlockingMaze 1 1)

+--+

| |

+--+

drawMaze (interlockingMaze 2 2)

+--+--+

| |

+--+ +

| |

+--+--+

drawMaze (interlockingMaze 3 3)

+--+--+--+

| |

+--+--+ +

| |

+--+--+ +

| |

+--+--+--+

drawMaze (interlockingMaze 4 4)

+--+--+--+--+

| |

+--+--+--+ +

| |

+ +--+--+ +

| |

+--+--+--+ +

| |

+--+--+--+--+

drawMaze (interlockingMaze 5 5)

+--+--+--+--+--+

| |

+--+--+--+--+ +

| |

+ +--+--+--+ +

| | |

+ +--+--+--+ +

| |

+--+--+--+--+ +

| |

+--+--+--+--+--+

drawMaze (interlockingMaze 6 6)

+--+--+--+--+--+--+

| |

+--+--+--+--+--+ +

| |

+ +--+--+--+--+ +

| | |

+ +--+--+--+ + +

| | |

+ +--+--+--+--+ +

| |

+--+--+--+--+--+ +

| |

+--+--+--+--+--+--+

drawMaze (interlockingMaze 4 6)

+--+--+--+--+

| |

+--+--+--+ +

| |

+ +--+--+ +

| | |

+ +--+ + +

| | |

+ +--+--+ +

| |

+--+--+--+ +

| |

+--+--+--+--+

Sample Runs 7.6
Without getting too bogged down in the details of the code, essentially the way the mazes are constructed is as follows: Mazes are either left-facing or right-facing. The base cases (one-row and two-rows) are explicitly defined. Larger mazes are constructed by putting another interlocking segment round a (translated) smaller maze facing the opposite way.
Appendix
Here are some utility functions to make it easier to see that a path is correct:

> pathToPlaces :: Path -> Place -> [Place]

> pathToPlaces [] (x,y) = [(x,y)]

> pathToPlaces (N:path) (x,y) = (x,y) : pathToPlaces path (x,y+1)

> pathToPlaces (S:path) (x,y) = (x,y) : pathToPlaces path (x,y-1)

> pathToPlaces (E:path) (x,y) = (x,y) : pathToPlaces path (x+1,y)

> pathToPlaces (W:path) (x,y) = (x,y) : pathToPlaces path (x-1,y)

> drawSolvedMaze :: Maze -> [Place] -> IO ()

> drawSolvedMaze maze placeList = putStr (concatMap (\s -> s ++ "\n") rowList)

>
where

>

lineList = reverse [0..(2 * snd (sizeOf maze))]

>

rowList = map (\n -> if (n `mod` 2 /= 0) then drawSolvedRowEW maze placeList (n `div` 2) 0 else drawRowNS maze (n `div` 2) 0) lineList

> drawSolvedRowEW :: Maze -> [Place] -> Int -> Int -> String

> drawSolvedRowEW maze placeList j i

>
| westWall && inSolution

= "|**" ++ rest

>
| westWall

= "| " ++ rest

>
| inSolution

= " **" ++ rest

>
| otherwise

= " " ++ rest

>
where

>

rest = if i == fst (sizeOf maze) - 1 then "|" else drawSolvedRowEW maze placeList j (i+1)

>

westWall = hasWall maze (i,j) W

>

inSolution = elem (i,j) placeList
Listing A.1
