Stuart Golodetz

FAO: Dr. G. Jones

Data Structures and Algorithms

Sheet 2 (continued)
II)

3.

(a)

Multiplying two 4-digit numbers:

Calculate:

ab*ef

cd*gh

(ab+cd)*(ef+gh)

Then:

ab*gh + cd*ef = (ab+cd)*(ef+gh) - ab*ef - cd*gh

Well, ab is just shiftr(abcd,2), cd is just abcd - shiftl(ab,2), ef is shiftr(efgh,2), gh is efgh - shiftl(ef,2). So there aren't any extra

multiplications needed there. And:

(10^4)(ab*ef) + (10^2)(ab*gh + cd*ef) + cd*gh

= shiftl(ab*ef,4) + shiftl(ab*gh + cd*ef,2) + cd*gh

Example:

1234 * 5678 = 7006652

ab*ef = 12*56 = 672

cd*gh = 2652

(ab+cd)*(ef+gh) = 6164

ab*gh + cd*ef = 2840

shiftl(ab*ef,4) + shiftl(ab*gh + cd*ef,2) + cd*gh

= 6720000 + 284000 + 2652 = 7006652

On the surface, this all appears to work perfectly, except for the fact that we're not actually necessarily multiplying 2-digit numbers only! If

ab+cd or ef+gh is not a 2-digit number (perfectly possible), then we have a bit of a problem, one which I'm not really sure how to work around

easily.

(b)

Do exactly the same thing, only extend it, i.e.:

a[1]...a[n] * b[1]...b[n] = ((10^(n/2))a[1]...a[n/2] + a[n/2+1]...a[n]) * ((10^(n/2))b[1]...b[n/2] + b[n/2+1]...b[n])

 = (10^n)(a[1]...a[n/2] * b[1]...b[n/2]) + (10^(n/2))(a[1]...a[n/2]*b[n/2+1]...b[n] + a[n/2+1]...a[n]*b[1]...b[n/2])

 + a[n/2+1]...a[n]*b[n/2+1]...b[n]

4.

tournament :: [a] -> [[(a,a)]]

tournament [x,y] = [[(x,y)]]

tournament xs = zipWith (++) (tournament ys) (tournament zs) ++ f ys zs (length ys)

where

(ys,zs) = splitAt (length xs `div` 2) xs

f :: [a] -> [a] -> Int -> [[(a,a)]]

f _ _ 0 = []

f as (b:bs) n = zip as (b:bs) : f as (bs ++ [b]) (n-1)

Explanations:

If we've got a schedule for the two sub-tournaments, then we can combine them using zipWith (++) for the following reason - the sets of players

for the two sub-tournaments are disjoint, so the rounds from each can be run in parallel.

The remaining rounds are figured out as follows (the bit I couldn't figure out without taking a look at the web page acknowledged below) -

Each player in the first half must play each player in the second half (each player in the first half has already played every other player in the

first half, and likewise each player in the second half has already played every other player in the second half). We pair each player with the

corresponding player in the second half, and rotate round until we get back to the beginning, and that gets us what we want.

Acknowledgement of some major hints:

http://www.student.cs.uwaterloo.ca/~cs341/Old_courses/F98/solutions/assign1Sol.html

IV)

For the representation of H, see the attached sheet.
The algorithm Heap-Delete(A,i) is highlighted (in bold and large font size) in the code below, to (hopefully!) make it easier to find this time (note that it’s called delete_node, just to be confusing). I was going to just provide the code for that, but it makes much more sense in the context of the whole heap class (which I wrote to ensure that the delete code actually worked). Note that we’re numbering from 0 in the array, whereas the question may be numbering from 1. This may result in a discrepancy when it comes to deleting element 2 in the last part of the question.
C++ note
Most of the code is relatively straightforward, but the use of Pred perhaps deserves a little explanation. By default, we have Pred = std::less<T>, where less is a standard template class defined (at least in the Dinkumware implementation supplied with Visual C++ 6.0) as:
template<class _Ty>

struct less : binary_function<_Ty, _Ty, bool> {

bool operator()(const _Ty& _X, const _Ty& _Y) const

{return (_X < _Y); }

};

Essentially, we construct an object of type less (instantiated at the type we are storing in the heap) via Pred(), then pass the two parameters to its operator() to be compared via the operator< of the type stored in the heap. So without going into the details of functors, basically in the default case Pred()(x,y) can be read as x < y. If we wanted to have an inverted heap of type T, we’d simply create a heap thus:
heap<T, std::greater<T> > h;

Anyway, onto the code:

#ifndef H_HEAP

#define H_HEAP

#ifndef H_STD_CASSERT

#define H_STD_CASSERT

#include <cassert>

#endif

#ifndef H_STD_FUNCTIONAL

#define H_STD_FUNCTIONAL

#include <functional>

#endif

#ifndef H_STD_IOSTREAM

#define H_STD_IOSTREAM

#include <iostream>

#endif

#ifndef H_STD_VECTOR

#define H_STD_VECTOR

#include <vector>

#endif

template <typename T, typename Pred = std::less<T> >

class heap

{

private:

/*

The children of m_data[i] (if they exist) are m_data[2*i+1] and m_data[2*i+2].

The parent of m_data[i] (if it exists) is m_data[(i-1)/2].

Where we use a variable n, we consistently have the heap represented by m_data[0..n].

Note that this means, for example, that when we write m_data.resize(n) in delete_node, what happens is that
the size of m_data decreases by 1, since |m_data[0..n-1]| = n.

*/

std::vector<T> m_data;

int child_l(int i) const

{

return 2*i+1;

}

int child_r(int i) const

{

return 2*i+2;

}

int parent(int i) const

{

return (i-1)/2;

}

void percolate(int i, int n = -1)

{

if(n == -1) n = m_data.size()-1;

assert((i >= 0) && (i <= n));

int j, k = i;

do

{

j = k;

if(j > 0 && Pred()(m_data[parent(j)], m_data[k])) k = parent(j);

std::swap(m_data[j], m_data[k]);

} while(j != k);

}

void sift_down(int i, int n = -1)

{

if(n == -1) n = m_data.size()-1;

assert((i >= 0) && (i <= n));

int j, k = i;

do

{

j = k;

if(child_l(j) <= n && Pred()(m_data[k], m_data[child_l(j)])) k = child_l(j);

if(child_r(j) <= n && Pred()(m_data[k], m_data[child_r(j)])) k = child_r(j);

std::swap(m_data[j], m_data[k]);

} while(j != k);

}

public:

void clear()

{

m_data.swap(std::vector<T>());

// idiomatic method to clear a vector and free up as much

// memory as possible

}

void delete_node(int i)

{

int n = m_data.size()-1;

assert((i >= 0) && (i <= n));

std::swap(m_data[i], m_data[n]);

if(Pred()(m_data[i], m_data[n]))

// if we've "lowered" the priority

{

sift_down(i,n-1);

}

else if(Pred()(m_data[n], m_data[i]))
// if we've "raised" the priority

{

percolate(i,n-1);

}

m_data.resize(n);

// decrease the size of the heap by 1

}

void insert_node(const T& t)

{

m_data.push_back(t);

percolate(m_data.size()-1);

}

void output(std::ostream& os) const

{

for(typename std::vector<T>::const_iterator it=m_data.begin(), iend=m_data.end(); it!=iend; ++it)

{

os << *it << ' ';

}

os << std::endl;
// note that this also ensures the stream is flushed

}

bool verify_heap(int i = 0) const

{

if(m_data.empty()) return true;

int n = m_data.size()-1;

assert((i >= 0) && (i <= n));

if(child_l(i) <= n)

{

if(Pred()(m_data[i], m_data[child_l(i)])) return false;

else if(!verify_heap(child_l(i))) return false;

}

if(child_r(i) <= n)

{

if(Pred()(m_data[i], m_data[child_r(i)])) return false;

else if(!verify_heap(child_r(i))) return false;

}

return true;

}

};

#endif
The algorithm definitely runs in O(log2 n) time. Consider:

Swapping is O(1)

Percolate is O(log2 n)

Sift down is O(log2 n)

Taking the size of a vector is O(1)

Decreasing the size of a vector is O(1)

The biggest thing there is O(log2 n), so that’s the cost of the whole algorithm.
Illustration of the method:
See attached sheet.
