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FAO: Dr. G. Jones

Data Structures and Algorithms

Exercise Sheet 1
1)

a)

Since Computer A performs 106 operations per second, and algorithm alpha takes a(n) operations on Computer A, it takes:

(106)(n2)/(106) = n2 seconds running algorithm alpha on Computer A to solve P

Since Computer B performs 1012 operations per second, and algorithm beta takes b(n) operations on Computer B, it takes:

(10n)/(1012) = 10(n-12) seconds running algorithm beta on Computer B to solve P

So you would use algorithm beta for the cases where:

10(n-12) < n2
In other words the cases where n <= 14.

You would use algorithm alpha for all the cases where n >= 15.

b)

alpha on A: 302 = 900 seconds = 15 minutes

beta on B: 10(30-12) = 1018 seconds (roughly 31.7 billion years - more than enough time to go for a coffee break while it's running...)

2)

Recall the definition of f(n) = O(g(n)):

f(n) = O(g(n)) iff there exist c, n0 > 0, s.t. for all n >= n0, f(n) <= c.g(n)

So since f = O(nk), there exist c, n0 > 0, s.t. for all n >= n0, f(n) <= c.nk.

Now, let d = max(0, <the maximum value of f(n)|[0,n0)>). Then for all 0 <= n < n0, we have that f(n) <= d, i.e. f(n) - d <= 0.

Now if f(n) <= c.nk for all n >= n0, then certainly f(n) - d <= c.nk, since d >= 0.

So in [0,n0), f(n) <= d, and in [n0,+∞), f(n) <= c.nk + d. Since c.nk >= 0, we can merge the two cases into one, namely that for all n:
f(n) <= c.nk + d.

But this is exactly what we need: all that remains is to write a = c, b = d.

3)

Proof by strong induction as follows:

[Base Cases]

f0(n)

= O(1)



{given}

= O(nk)

fk(1)

<= fk(0) + f0(n)

= O(1) + O(1)


{both are constants}

= O(1)

= O(nk)

These are (hopefully!) sufficient; consider the attached diagram.
[Hypothesis]

fK(N) = O(nk) for 0 < N <= n and 0 <= K <= k.

[Step]

fk(n) <= fk(n-1) + fk-1(n)

         = O(nk) + O(nk)

{by hypothesis}

         = O(nk)

Completing the proof as required. A rough alternative method follows:

fk(n) <= fk(n-1) + fk-1(n)

      <= fk(n-1) + (fk-1(n-1) + fk-2(n))

      =  fk(n-1) + fk-1(n-1) + fk-2(n)

      <= fk(n-1) + fk-1(n-1) + (fk-2(n-1) + fk-3(n))

      <= fk(n-1) + fk-1(n-1) + ... + f1(n-1) + f0(n)

      =  fk(n-1) + fk-1(n-1) + ... + f1(n-1) + O(1)

Now the simplest method at this stage is simply to show that fk = O(nk) is actually a valid upper bound:

fk(n) <= fk(n-1) + fk-1(n-1) + ... + f1(n-1) + O(1)


{from above}

      =  O((n-1)k) + O((n-1)(k-1)) + ... + O(n-1) + O(1)


{assumes all smaller results are true - i.e. strong induction method}

      <= O(nk) + O(nk) + ... + O(nk) + O(nk)



{since (n-a)k = O(nk) and n(k-1) = O(nk)}

      =  (k+1)O(nk)






{collate terms}

      =  O((k+1)(nk))

Now we know that in general f(n) = O(k.g(n)) => f(n) = O(g(n)).

Thus since fk(n) = O((k+1)(nk)), fk(n) = O(nk), as required.

5)

a)

The worst case (the only one we're interested in here) is where we have to recurse on insert:

T(insert)(m,n) <= T(insert)(m,n-1) + k

where k is the constant time taken for a comparison.

Then:

T(insert)(m,n) <= T(insert)(m,n-1) + k

                       <= (T(insert)(m,n-2) + k) + k

                       <= T(insert)(m,1) + (n-1)*k

Now T(insert)(m,1) <= k + p

where p is some constant s.t. p = max(T(insert)(m,0),T(:)).

Thus:

T(insert)(m,n) <= k + p + (n-1)*k

                        =  n*k + p

                        =  O(n)

b)

FOR REFERENCE PURPOSES:

foldr            :: (a -> b -> b) -> b -> [a] -> b

foldr f z []      = z

foldr f z (x:xs)  = f x (foldr f z xs)

T(foldr)(n) <= T(f)(1,n-1) + T(foldr)(n-1)

T(isort)(n) <= T(insert)(1,n-1) + T(isort)(n-1)

                  =  T(isort)(n-1) + O(n)

                  <= (T(isort)(n-2) + O(n)) + O(n)

                  <= T(isort)(0) + n*O(n)


[abusing notation slightly]

                  =  O(1) + O(n2)

                  =  O(n2)

8)

a)

sum{i=1 TO n}(i) = 1 + ... + n = ½n(n+1)

b)

sum{i=1 TO n}(ai) = a + a2 + ... + an
This is a geometric progression, with start term and ratio both equal to a. Now, since trying to remember sixth-form maths is not easy, we'll

rederive the formula for geometric progressions instead of simply quoting it:

S(n) = a + ar + ar2 + ... + ar(n-1)
rS(n) = ar + ar2 + ... + ar(n-1) + arn
S(n) - rS(n) = a(1 - rn)

S(n) = a(1 - rn)/(1 - r)

So the sum here turns out to be:

a(1 - an)/(1 - a)

c)

sum{i=1 TO n}(iai)

= a + 2a2 + 3a3 + ... + nan
= a(1 + 2a + 3a2 + ... + nan-1)

= a . d/da(a + a2 + ... + an)

= a . d/da(sum{i=1 TO n}(ai))

= a . d/da(a(1 - an)/(1 - a))

= a . ((1-a)(a(-na(n-1)) + (1-an)) - a(1-an)(-1))/((1-a)2)

= a . ((1-a)(-nan + 1 - an) + a - a(n+1))/((1-a)2)

= a . ((a-1)((n+1)an - 1) + a - a(n+1))/((1-a)2)

= a . ((n+1)a(n+1) - a - (n+1)an + 1 + a - a(n+1))/((1-a)2)

= a . (na(n+1) - (n+1)an + 1)/((1-a)2)

= a . ((an)(na - (n+1)) + 1)/((1-a)2)

= ((a(n+1))(na - (n+1)) + a)/((1-a)2)

d)

sum{i=1 TO k}((2(k-i))(i2))

= sum{i=1 TO k}((2k)(i2)/(2i))

= (2k).sum{i=1 TO k}((i2)/(2i))


[since 2k is a constant]

...

e)

We first note that the answer is going to be 2n, and then proceed to check it. One reason for expecting this is as follows: Suppose we want to

write down all the elements of the power set of a set S (s.t. |S| = n). Then one reasonable way of going about it might be to write down all the

sets with no elements (in fact there's only one, the empty set), all the sets with one element, ..., all the sets with n elements (again, there's

only one). Now the size of the power set is 2n (for each s in S, we choose to either include it in a given set in P(S) or not - there are thus

two choices each time and we make a choice n times, so the total number of sets is 2n). Further, the number of sets with i elements is nCi. So

if we sum nCi from 0 to n, it must come to 2n (the size of the power set).

Proof:

sum{i=0 TO n}(nCi)

= sum{i=0 TO n}(n!/(i!(n-i)!))

...

f)

...

9)

a)

T(n) <= 2T(n-1) + n

        <= 2(2T((n-1)-1) + (n-1)) + n

        =   2(2T(n-2) + (n-1)) + n

        <= 2(2(2T(n-3) + (n-2)) + (n-1)) + n

        =  (23)T(n-3) + (22)(n-2) + 2(n-1) + n

        <= (23)(2T(n-4) + (n-3)) + (22)(n-2) + 2(n-1) + n

        =   (24)T(n-4) + (23)(n-3) + (22)(n-2) + 2(n-1) + n

        ...

        <= (2(n-1)T(1) + sum{i=0 TO (n-2)}((2i)(n-i))

        <= 2(n-1) + n.sum{i=0 TO (n-2)}(2i)

A brief detour:

sum{i=0 TO n-2}(2i)

= 1(1-2(n-1)/(1-2)

= 2(n-1)-1

Thus:

T(n) <= 2 (n-1) + n.(2(n-1)-1)

        <= 2(n-1) + n.2(n-1) - n

        <= (n+1)(2(n-1))

        =  ½(n.2n) + 2(n-1)
        =  O(n.2n) + ½(2n)

        =  O(n.2n) + O(2n)

        =  O(n.2n)

b)

Let n = 2k for simplicity (with a corresponding loss of generality which we are willing to accept for the purposes of managing this exercise):

T(n) =  T(2k)

     <= T(2(k-1)) + k.2k
     <= (T(2(k-2)) + (k-1).2(k-1)) + k.2k
     <= ((T(2(k-3)) + (k-2).2(k-2)) + (k-1).2(k-1)) + k.2k
     ...

     <= T(1) + sum{i=1 TO k}(i.2i)

     =  1 + sum{i=1 TO k}(i.2i)

By 8(c), we have that:

sum{i=1 TO k}(i.2i)

=  ((2(k+1))(2k - (k+1)) + 2)/((1-2)2)

=  ((2(k+1))(k-1) + 2)

=  k.2(k+1) - 2(k+1) + 2

<= k.2(k+1)



[since k >= 0]

=  2k.2k
=  2n log2 n

=  O(n log2 n)

Thus:

T(n) = O(n log2 n)

c)

T(n) <= T(n-1) + 3n2
       <= (T(n-2) + 3(n-1)2) + 3n2
       ...

       <= T(1) + sum{i=2 TO n}(3i2)

       =  1 + 3(sum{i=1 TO n}(i2) - 12)

       =  1 + 3(n(n+1)(2n+1)/6 - 1)

       =  n(n+1)(2n+1)/2 - 2

       <= n(n+1)(2n+1)/2

       =  O(n3)

d)

Let n = 2k again for simplicity. Then:

T(n) =  T(2k)

     <= 2T(2(k-1)) + 22k
     <= 2(2T(2(k-2)) + 2(2(k-1))) + 22k
     <= 2(2T(2(k-2)) + 2(2k-1)) + 22k
     =  (22)T(2(k-2) + 2(2k-1) + 22k
     ...

     <= (2k)T(1) + sum{i=(k+1) TO 2k}(2i)

     =  2k + O(22k)

     =  n + O(n2)

     =  O(n2)

We can verify this one using (a slightly fudged version of) the master theorem, since T(n) is of the form:

T(n) <= a(T(n/b)) + c.nk
where in this case a = 2, b = 2, c = 1 and k = 2. Then bk = 22 = 4, and clearly a < bk since 2 < 4. Thus T(n) = O(nk) = O(n2), the same

result as we had above.
