Stuart Golodetz

Concurrency

Tutorial 3
Exercise 2.3.1

A bag is a process with channels left and right which behaves like a buffer except that the order in which things

come out is not necessarily that in which they are put in. Use ||| and COPY to define a bag with capacity N. Explain

your definition. Now define an infinite capacity bag by following the style of recursion in the process Ctr above.

Bag(N) = |||i:{1..N}@COPY

A bag of size N is the same as interleaving N bags of size 1, where each bag of size 1 is defined by COPY.

BagInf = left?x -> (BagInf ||| right!x -> STOP)

Example:

BagInf

left?x -> (BagInf ||| right!x -> STOP)

<Input 5 (say)>

BagInf ||| right!5 -> STOP

(left?x -> (BagInf ||| right!x -> STOP)) ||| right!5 -> STOP

<Input 3 (say)>

(BagInf ||| right!3 -> STOP) ||| right!5 -> STOP

<Output 3>

(BagInf ||| STOP) ||| right!5 -> STOP

<Output 5>

(BagInf ||| STOP) ||| STOP

Exercise 2.3.4

Suppose we need multiple cash-point machines to cope with increased customer demand. Why is an interleaving of two or

more of our existing machines (for example ATM2 ||| ATM2) not a good idea?

Hint: think what might happen in this model when two customers are using them simultaneously. How might you avoid this

problem?

Suppose two customers are using the machines simultaneously. Then when they request a certain amount of money,

via a req?n event, there's no way of knowing which machine will actually communicate the event.

You could avoid this problem as follows (I'm going to use a machine like ATM1 for simplicity):

ATMP(i) = in!i?c -> pin.i.fpin(c) -> req!i?n -> dispense!i!n -> out!i!c -> ATMP(i)

Bank = ATMP(1) ||| ATMP(2)

Exercise 2.4.2

Describe the behaviours of the following processes; in each case find a tail-recursive process equivalent to it.

(i) COPY[|{|left|}|]COPY

(ii) COPY[|{|right|}|]COPY

The first must synchronise on left, so both sides input the same thing, then they output in either order. A

tail-recursive equivalent is:

COPYi = left?x -> right!x -> right!x -> COPYi

The second must synchronise on right, so one side inputs first, then the other (they don't have to input the same

thing), then either (if both sides inputted the same thing) the process can output the thing read in, or we

deadlock, because the two sides can't synchronise on right. A tail-recursive equivalent is:

COPYii = left?x -> left?y -> (if x == y then right!x -> COPYii else STOP)

Exercise 2.5.1

We can describe a bank as a process that simply opens and closes:

BANK = bank_open -> bank_close -> BANK

Interleave this with the process that records what day of the week it is:

DAYS = Monday -> Tuesday -> ... -> Sunday -> DAYS

Express the following as parallel constraints to this system:

(i) It opens no more than once per day.

(ii) It is always closed at midnight (when the day events occur).

(iii) It is never open on a Sunday.

(iv) It is always open at least two times per week.

channel bank_open, bank_close

channel Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

DayEvents = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}

AllEvents = union(DayEvents, {bank_open, bank_close})

Bank = bank_open -> bank_close -> Bank

Days = Monday -> Tuesday -> Wednesday -> Thursday -> Friday -> Saturday -> Sunday -> Days

BankEx = Bank ||| Days

datatype State1 = OPENED | NOTOPENED

Constraint1 = Constraint1State(NOTOPENED)

Constraint1State(OPENED) = [] d:DayEvents @ d -> Constraint1State(NOTOPENED)

Constraint1State(NOTOPENED) = bank_open -> Constraint1State(OPENED)




[] ([] d:DayEvents @ d -> Constraint1State(NOTOPENED))

BankEx1 = BankEx[|diff(AllEvents, {bank_close})|]Constraint1

datatype State2 = OPEN | CLOSED

Constraint2 = Constraint2State(CLOSED)

Constraint2State(OPEN) = bank_close -> Constraint2State(CLOSED)

Constraint2State(CLOSED) = bank_open -> Constraint2State(OPEN)




[] ([] d:DayEvents @ d -> Constraint2State(CLOSED))

BankEx2 = BankEx1[|AllEvents|]Constraint2

Constraint3 = Monday -> Constraint3State(Monday)

Constraint3State(d) = (if d == Sunday then STOP else bank_open -> Constraint3State(d))




[] ([] next:DayEvents @ next -> Constraint3State(next))

BankEx3 = BankEx2[|diff(AllEvents, {bank_close})|]Constraint3

Constraint4 = Monday -> Constraint4State(0)

Constraint4State(n) = bank_open -> Constraint4State(n+1)




[] (if n >= 2 then Monday -> Constraint4State(0) else STOP)




[] ([] next:diff(DayEvents, {Monday}) @ next -> Constraint4State(n))

BankEx4 = BankEx3[|diff(AllEvents, {bank_close})|]Constraint4

Exercise 3.1.3

If P = a?x -> b!x -> b!x -> P then it is possible to find a process Q such that

(P[{|a,b|}||{|b,c|}]Q) \ {|b|} =T COPY'(a,c)

(i.e. a one-place buffer). Find Q and use the UFP rule to prove the equivalence.

Answer:

Let's see if we can creep up on the right answer:

First attempt - Try Q = b?x -> b!x -> c!x -> Q

But this fails, because we can do another another a?x before our c!x.

Second attempt - Try Q = b?x -> c!x -> b!x -> Q

This version works.

Proof:

COPY'(a,c) = a?x -> c!x -> COPY'(a,c)

F[COPY'](p) := a?x -> c!x -> p

COPY''

= (P[{|a,b|}||{|b,c|}]Q) \ {|b|}

= ((a?x -> b!x -> b!x -> P)[{|a,b|}||{|b,c|}](b?x -> c!x -> b!x -> Q)) \ {|b|}

= (a?x -> ((b!x -> b!x -> P)[{|a,b|}||{|b,c|}](b!x -> c!x -> b!x -> Q))) \ {|b|}

= (a?x -> b!x -> ((b!x -> P)[{|a,b|}||{|b,c|}](c!x -> b!x -> Q))) \ {|b|}

= (a?x -> b!x -> c!x -> ((b!x -> P)[{|a,b|}||{|b,c|}](b!x -> Q))) \ {|b|}

= (a?x -> b!x -> c!x -> b!x -> (P[{|a,b|}||{|b,c|}]Q)) \ {|b|}

= a?x -> c!x -> ((P[{|a,b|}||{|b,c|}]Q) \ {|b|})

= a?x -> c!x -> COPY''

= F[COPY'](COPY'')

So COPY'' is a fixed point of the tail recursion, and hence by UFP COPY'' = COPY'(a,c).

Exercise 3.2.2

Use an alphabet transformation to connect the output channel of COPY to the input channel of CELL(f) and vice-versa (i.e. there are two

processes running in parallel). How does this process behave? How does it behave if COPY is replaced by right!x -> COPY?

Add an extra channel in to COPY so that the resulting process can be initialised along this channel and thereafter behaves as before, so

achieving the effect of the second case in the last paragraph for any x.

Answer:

S = {1,2,3,4,5}

channel left, right: S

func(x) = x

COPY = left?x -> right!x -> COPY

CELL(f) = left?v -> right!f(v) -> CELL(f)

PART1(f) = COPY [|{|left,right|}|] (CELL(f) [[left <- right, right <- left]])

This process deadlocks, since we can't input on either channel.

COPY' = right?x -> COPY'

I assume it means right?x -> COPY', not right!x -> COPY'? Otherwise it doesn't seem to make sense, because the x is magically appearing

from nowhere.

PART2(f) = COPY' [|{|right|}|] (CELL(f) [[left <- right, right <- left]])

This process behaves like a one-place buffer which reads its input in on channel right, and outputs it on channel left.

channel in: S

COPY'' = in?x -> COPY'

PART3(f) = COPY'' [|{|right|}|] (CELL(f) [[left <- right, right <- left]])

This process behaves exactly the same as above, except that we do an in?x right at the start before anything else happens. I'm not sure this

is exactly what was intended, but neither am I sure exactly what *was* intended!

Exercise 3.2.3

Find renaming relations R[i] which, applied to the process COUNT(0) achieve the following effects:

(i) A process with events a, b and c, where the number of c's is always less than or equal to the total of the a's and b's.

PROCESS1 = COUNT(0)[[down <- c, up <- a, up <- b]]

(ii) A process that can always communicate either up or down.

PROCESS2 = COUNT(0)[[up <- up, up <- down]]

(iii) A process that has the same traces as COUNT(0) but may nondeterministically sometimes refuse to communicate down when COUNT(0) would have accepted it.

PROCESS3 = (COUNT(0)[[down <- down, down <- nodown]]) \ {nodown}

I'm not sure this is entirely what we were looking for, but it seems to work. More importantly, I can't see how to do it another way, so I

probably need some enlightening!

Exercise 3.3.1

What failures/divergences refinements hold between the following processes: div, Chaos{a,b}, Chaos{a}, DF{a,b}, RUN{a,b}, RUN{a}, STOP,

a -> div and a -> STOP? Which of them are deterministic?

Assume the alphabet is {a,b} in all of this.

div is refined by everything
It's the least refined process

Chaos{a,b} [FD= Chaos{a}
The set of failures of Chaos{a} is a subset of those of Chaos{a,b}. Furthermore, neither can diverge, so the





divergences of Chaos{a} is a (non-proper) subset of the divergences of Chaos{a,b}.





Chaos{a,b} has (e.g.) (<b>,{a}) in its failure set, whereas Chaos{a} doesn't, since it can't do a <b> trace.

Chaos{a,b} [FD= DF{a,b}
DF{a,b} can't refuse {a,b}, whereas Chaos{a,b} can. The failures of DF{a,b} is a subset of those of Chaos{a,b}.





Neither can diverge.

DF{a,b} [FD= RUN{a,b}
RUN{a,b} can't refuse either of a or b, whereas DF{a,b} can refuse one of them (but not both) each time.





Neither can diverge.

Chaos{a} [FD= STOP
Neither can diverge. The failures of STOP are {(<>,{}),(<>,{a}),(<>,{b}),(<>,{a,b})}. This is a subset of





those of Chaos{a}, which also contains (e.g.) (<a>,{b}). Note that because [FD= is transitive, this also means





that Chaos{a,b} [FD= STOP.

Chaos{a} [FD= RUN{a}
The same way Chaos{a,b} [FD= RUN{a,b}

failuresB(STOP) = {(<>,{}),(<>,{a}),(<>,{b}),(<>,{a,b})}

failuresB(a -> STOP) = {(<>,{}),(<>,{b}),(<a>,{}),(<a>,{a}),(<a>,{b}),(<a>,{a,b})}

So neither STOP nor a -> STOP FD-refines the other.

failuresB(RUN{a,b}) = {(<>,{}),(<a>,{}),(<b>,{}),(<a,a>,{}),(<a,b>,{}),(<b,a>,{}),...}

So STOP doesn't FD-refine RUN{a,b}, since RUN{a,b} doesn't fail on (e.g.) (<>,{a}) and hence failuresB(STOP) isn't a subset of failuresB(RUN{a,b}).

failuresB(a -> div)

= failures(STOP) U divergences(STOP)

= {(<>,{}),(<>,{b}),(<a>,{}),(<a>,{a}),(<a>,{b}),(<a>,{a,b})}

= failuresB(a -> STOP)

Now also divergences(a -> div) = {<a>} and divergences(a -> STOP) = {}.

So a -> div [FD= a -> STOP.

So what we've ended up with (via the transitivity of [FD=) is some sort of DAG(*) structure, where div is at the root, and each downward edge from u to v means v FD-refines u. (*) Directed Acyclic Graph

It looks vaguely like:

div --- a -> div --- a -> STOP

    --- Chaos{a,b} --- Chaos{a} --- STOP

                                --- RUN{a}

                   --- DF{a,b} --- RUN{a,b}
Note that there are no FD-refinements between a -> STOP and RUN{a} either, since a -> STOP fails on (<a>,{a}), which RUN{a} doesn't, and RUN{a} fails on (<a,a>,{b}), which a -> STOP doesn't.

Deterministic processes: RUN{a,b}, RUN{a}, STOP, a -> STOP

Exercise 3.3.2

Formulate a behavioural failures specification (using the variables tr and ref as discussed above) which asserts that a process must always accept the event a if the number of a's in tr is less than that of b's in tr. What is the characteristic process (i) on the assumption that SIGMA = {a,b} and

(ii) on the assumption that it is larger?

<for all>s . s↓a < s↓b -> (s,{a}) <not in> failures(P)

(i)

P(0) = b -> P(1)

P(n) = b -> P(n+1) [] a -> P(n-1)

Characteristic process:

(|~|n:N @ P(n)) |~| STOP

(I think, anyway...)

(ii)

Q(0) = b -> Q(1) [] ([] x:diff(SIGMA,{a,b}) @ x -> Q(0))

Q(n) = b -> Q(n+1) [] a -> Q(n-1) [] ([] x:diff(SIGMA,{a,b}) @ x -> Q(n))

Characteristic process:

(|~|n:N @ Q(n)) |~| STOP
