Principles of Computer Security
Exercises 4

Stuart Golodetz

February 26, 2006

1. (a)

(b)

()

2. (a)

(b)

The keys are 56 bits long, so there are 2°° possible keys to try. In the worst case, the attack

thus takes 2°¢ s = 72057594037927936 us ~ 2280 years (3SF). In the expected case,
the attack takes half that, i.e. 1140 years or so. (The best case, of course, sees the attack
taking 1 ps: in practice, the probability of this happening is so small as to be negligible!)

The only ways I can think of to improve on the attack are:

e Use lots of computers running in parallel. In practice, you’d need a LOT of computers,
but with 832200 running in parallel you could cut the time down to a day, which is
feasible if you’re the US government, say: there are a lot more computers than that
in existence, remember! It’s also theoretically feasible if you’re a hacker and have
managed to gain access to a lot of people’s machines with a trojan or something.

e TODO

To protect against this sort of attack, we can try and ensure that the attacker has to decrypt
the whole message to learn its meaning. In other words, even if he succeeds in decrypting
any single block, the attacker won’t discover part of the message. The easiest way to do
this is just to rearrange the message before encrypting it with DES.

The block size of DES is 64 bits. If the message length n isn’t a multiple of 64 then we can
pad the message with x characters until it is. We can thus work with the assumption that
there are m = ¢; blocks used for a message of length n. We rearrange the original message
Co-.-Cn—1 SO that block ¢ s.t. 0 < ¢ < m is the encryption of ¢;¢; 1 mCit2m---Cit(m—1)m-

Let’s give a simple concrete example (using (for simplicity) a block size of 4 bits, meaning
there are % = 4 blocks):

This is a testXxX
0123012301230123

!
T as it istx s ex
—— N—— —— ——
Block 0 Block 1 Block 2 Block 3
The actual example is unimportant: the point is that decrypting any of the blocks just
gives you a load of gibberish. To decrypt the original message, you have to decrypt all the

blocks, something we expect to take a lot longer than the 1 us the attacker was spending
decrypting just a few blocks.

We want e to be a small odd integer coprime to ¢(n) = (p — 1)(¢ — 1). It’s clear that
79 is both small (roughly speaking!), odd and integral, so all that remains to check is that
it’s coprime to (p — 1)(¢ — 1) = 42 x 72 = 3024. In other words, we want to show that
gcd(3024,79) = 1. Well, using Euclid’s Algorithm:

gcd(3024,79) = ged(79,22) = ged(22,13) = ged(13,9) = ged(9,4)
= gcd(4,1) = gcd(1,0) =1

We know that d = e~ mod ¢(n) = 797! mod 3024, so we can use the Extended Euclidean
Algorithm to calculate it. We proceed as follows:

1=1-0 = 1—(4—4-1)=-1-445-1
= —1-4459-2-4)=5-9—11-4
= 5.9-11(13—-9) = —11-134+16-9
= —11-134+16(22—13) =16-22—27-13
= 16-22—27(79 — 3-22) = —27- 79 + 97 - 22
= —27-79+97(3024 — 38 - 79)
= 97-3024;~ 371379

So the multiplicative inverse of 79 modulo 3024 is derived by getting —3713 into the right
range (i.e. (0,3024)) and turns out to be —3713 + 2 - 3024 = 2335. Checking this, we
calculate that 79 - 2335 mod 3024 = 184465 mod 3024 = 1.

(c) The encryption of 42 is the result of the calculation:

42°modn
= 42™mod 3139
[(422 mod 3139) - ((42' mod 3139)7 mod 3139)] mod 3139
1764 - (22357 mod 3139)] mod 3139
[1764 - 2106] mod 3139
1547

(d) The result should clearly be 42, since it would be pretty pointless if we encrypted a mes-
sage and it decrypted to a different message! To decrypt, we calculate as follows:

1547¢ mod n
= 1547%% mod 3139
(1547° mod 3139)*" mod 3139
2880%6" mod 3139
[(2880° mod 3139) - (2880%62 mod 3139)] mod 3139
(2794 - (2880 mod 3139)"" mod 3139)] mod 3139
2794 - (146377 mod 3139)] mod 3139
2794 - (14637 mod 3139)1 mod 3139)] mod 3139
2794 - (216 mod 3139)] mod 3139
[2794 - 1119] mod 3139
= 42

3. First of all we prove the hint:

M@=D=D mod p
= (M® Y modp)*modp {by (a)}
= 1@ Y modp {by Fermat’s Little Theorem}
= 1lmodp
=1

It’s also analogously true that A/P~D@~) modg = 1. Now, if MP~D@=D modp = 1 then
Jz- MP=D=1) = pr+1 and analogously therefore Jy- M P~D@=1) = ¢y 41. Whence pz = qy
and by the fundamental theorem of arithmetic (i.e. numbers have a unique prime factorisation),
it must be the case that z = ¢z for some z (since p and ¢ are relatively prime and px must
contain ¢ as a factor). Then M®~D@=D = (pqg)z + 1, whence MP~D"D mod(p - q) = 1, as
required. (Note that the same result would have followed from the Chinese Remainder Theorem
we’re learning about in ADSA, but this shows it explicitly.)

We now need to derive our main result, i.e. that M°*modn = M. We observe that ed =
Imod(p—1)(q—1),s0ed =1+ k(p — 1)(q¢ — 1) for some integer k. Consider:

M mod p
— MMk(p_l)(q_l) modp
M(M(p—l))k:(q—l) modp
= M(M® Y modp)*@=Y modp
2

Now, provided M # 0mod p, this is equal (by Fermat’s Little Theorem) to M - 1¥(¢=Y mod p =
Mmodp = M. (By contrast, if M = 0mod p, then M**modp = 0°*modp = Omodp =
M mod p anyway.)

An entirely analogous argument will show that M/°®mod ¢ = M as well. Whence as before,
we can deduce that M“* modn = M, and we’re done.

4. The protocol description is as follows:

l.a—b:a,{{a,n.}prw) sk
2.b— a: {ng, m, ku}pr(a)
3.a—b: {nb}pK(b)

The protocol achieves the following:

(a) Both a and b know £, and no-one else does. The justification for this is that b knows k£,
because he created it and the only time it’s sent in a message is when it’s sent to a and
encrypted with a’s public key: in that instance, only a can read it.

(b) a knows that b wants to talk to him and that the key £, is current and from b. The
justification for this is that he sent his nonce n,, to b encrypted using PK (b) and received
it back in a message: only b could possibly have decrypted the message to determine n,
(in the timespan involved, at least), so b must have sent the message containing it and the
session key k.

(c) b knows that a wants to talk to him, since he sent his nonce n; to a encrypted with a’s
public key and received it back in a message: a is the only other person who could know
1y, SO @ must have sent it back and want to talk to him.

5. One (rather complicated) scheme would be as follows:
1.c—b:c,{{c,ne, m,amount} px @)} sk
Providing amount < balance :

2.0 —=m b, {{b, 1} pr(m)}sK®

3.m — b:{ny, nm}rre

4.0 — ¢ {{{b, ¢, nn, amount} pg(my, Nt i) PE ()

5.¢c— m: ¢, {{{b, ¢, nm, amount} p(m), description(goods), n.} pr(m) } sk ()
Providing price(goods) = amount :

6. m — b: {ny, ne, c,amount} pry)

{Bank transfers amount from c to m}

7.0 —=m:{nm}rrm)

8. m — c: goods

{If goods don’t turn up, complain to3the bank!}

The way this works is as follows:

(a) First of all, c tells the bank ‘I am ¢, I want to buy something from this merchant for this
amount and here’s a nonce you can use to convince me what I’m getting from you is fresh.’

(b) The bank checks the amount against ¢’s balance and, provided there’s enough in the ac-
count, informs the merchant that the customer wants to make a transaction, giving the
merchant its nonce and requesting one in return.

(c) The bank gives the customer a token to use for the transaction - on receiving this, the
merchant will know this came from the bank because only the bank knows his nonce n,,.
The bank assures the customer this is recent by using the customer’s nonce 7.

(d) The customer sends the token to the merchant, along with a description of the goods and
his nonce n., which the merchant can use to prove to the bank that the customer really
wants this transaction to go ahead (this prevents merchants arbitrarily getting banks to
transfer money around).

(e) The merchant tells the bank to transfer the money from c to m.
(f) The bank tells the merchant he’s done this (by sending n,,, which only he and m know).

(g) The merchant sends the customer the goods (we hope!) Failing which, legal proceedings
might ensue.

What does this protocol achieve? Well:

e The merchant can be sure the customer will pay without needing a credit card number (the
transaction is handled by the bank).

e The bank can be sure that transactions only occur when both the merchant and the cus-
tomer want them to (the various nonces are used to ensure this).

e The customer can be sure that, at worst, the merchant can transfer some of his money this
one time and renege on the deal: with the traditional credit card scheme, the merchant has
the customer’s card number and could pass this off to unscrupulous third parties, etc. He
can also be sure that only transactions that he explicitly authorises will go ahead. Finally,
he can be sure that the details of the transaction (other than the amount involved) are
unknown to the bank.

6. TODO: I wasn’t really sure how to go about this one, I’ll have to see how to do it in class.

