Stuart Golodetz

Computer Graphics

Exercises 4
1.
Derive the intersection of a ray with a quadric surface. Modify the method used to derive the intersection of a ray with a sphere in equations 15.13-16 in CGPP (p.703) to handle the definition of a quadric given in section 11.4 in CGPP. [Hint: use matrix notation.]
Give an expression for the gradient at a point on such a surface, and verify that this expression gives the expected direction for the normal vector to the surface of a sphere.

{
CGPP p.528

f(x,y,z) = ax2 + by2 + cz2 + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k = 0
}

Answer:
The ray has equations

x = x0 + t∆x

y = y0 + t∆y

z = z0 + t∆z

Plugging these into the above equation gives us:
a(x0 + t∆x)2 + b(y0 + t∆y)2 + c(z0 + t∆z)2 + 2d(x0 + t∆x)(y0 + t∆y) + 2e(y0 + t∆y)(z0 + t∆z) + 2f(x0 + t∆x)(z0 + t∆z) + 2g(x0 + t∆x) + 2h(y0 + t∆y) + 2j(z0 + t∆z) + k = 0
ax02 + 2ax0t∆x + at2∆x2 + by02 + 2by0t∆y + bt2∆y2 + cz02 + 2cz0t∆z + ct2∆z2 + 2dx0y0 + 2dx0t∆y + 2dy0t∆x + 2dt2∆x∆y + 2ey0z0 + 2ey0t∆z + 2ez0t∆y + 2et2∆y∆z + 2fx0z0 + 2fx0t∆z + 2fz0t∆x + 2ft2∆x∆z + 2gx0 + 2gt∆x + 2hy0 + 2ht∆y + 2jz0 + 2jt∆z + k = 0
Collecting terms gives:

(a∆x2 + b∆y2 + c∆z2 + 2d∆x∆y + 2e∆y∆z + 2f∆x∆z)t2 + (2ax0∆x + 2by0∆y + 2cz0∆z + 2dx0∆y + 2dy0∆x + 2ey0∆z + 2ez0∆y + 2fx0∆z + 2fz0∆x + 2g∆x + 2h∆y + 2j∆z)t + (ax02 + by02 + cz02 + 2dx0y0 + 2ey0z0 + 2fx0z0 + 2gx0 + 2hy0 + 2jz0 + k) = 0
This is a quadratic in t, with coefficients expressed entirely in constants derived from the quadric and ray equations, so it can be solved using the quadratic formula. If there are no real roots, then the ray and quadric do not intersect, otherwise they do.

As far as the gradient at a point on such a surface goes, we compute:

(f

= ((f/(x, (f/(y, (f/(z)

= (2ax + 2dy + 2fz + 2g, 2by + 2dx + 2ez + 2h, 2cz + 2ey + 2fx + 2j)

Well, a sphere centred at (cx, cy, cz) with radius r has the equation:

x2 – 2cxx + cx2 + y2 – 2cyy + cy2 + z2 – 2czz + cz2 = r2
as per equation 15.13 in CGPP.
This is the same as:

1x2 + 1y2 + 1z2 + 0xy + 0yz + 0xz + (-2cx)x + (-2cy)y + (-2cz)z + cx2 + cy2 + cz2 – r2 = 0

But now this is in the same form as the above equation, with coefficients:

a = b = c = 1

d = e = f = 0

g = -cx
h = -cy
j = -cz
k = cx2 + cy2 + cz2 – r2
Whence, in this case:
(f

= ((f/(x, (f/(y, (f/(z)

= (2x – 2cx, 2y – 2cy, 2z – 2cz)

= (2(x – cx), 2(y – cy), 2(z – cz))

This is definitely what we expect for a sphere.

2.

Well the volume bit doesn’t seem too bad, at least. If you fire a regular m x n array of parallel rays which are d apart from each other, then if lij is the length of the (i,j) ray which is inside the object, then something like:

d2 Σi=1,m Σj=1,n lij
will give us an (inaccurate) estimate of the volume of the object.

As far as the centre of mass bit goes, I’m feeling somewhat bemused. On the one hand, I’ve never really learnt about volume integrals; on the other hand, this does seem similar to some Mechanics 3 I vaguely remember from Further Maths A-Level (which seems rather a while back now). The upshot of which is, naturally, that although I feel like this is something I really should be able to do in theory, I’m finding that in practice it’s something with which I’m struggling. A hint (or several) would be much appreciated!
3.

Write down an equation for the Phong illumination model, carefully explaining the terms and coefficients that you use.
A square face of a polyhedra lies in the x-y plane between -1 <= x <= 1 and -1 <= y <= 1, and is illuminated by a point light source positioned at coordinates (8,0,6). Assuming the Phong illumination model write down an equation that describes the amount of illumination seen from a camera positioned at (a,b,c) (with c > 0) and looking at a point on the face (x,y,0). Your equation should only be in terms of illumination values, surface coefficients, and the values given. Also, be sure that your equation correctly accounts for all values of a and b.

For a given pair of values for x and y there is a line of camera placements along which a maximum illumination is seen. Compute the equation of that line, and explain how it relates to the Phong illumination model.

Answer:

(i)

I = Iaka + Ip[kd(N . L) + ks(R . V)n]
Ia
ambient illumination

ka
ambient reflection coefficient

Ip
illumination level

kd
diffuse reflection coefficient

ks
specular reflection coefficient

n
specular reflection exponent

N
the normal to the surface at the point (normalized)

L
a vector from the point to the light (normalized)

R
a vector in the direction of reflection (L mirrored about N)

V
a vector from the point to the viewer (normalized)
(ii)

N = (0,0,1)
L

= (8-x,-y,6)/sqrt((8-x)2 + y2 + 36)
= (8-x,-y,6)/sqrt(64 – 16x + x2 + y2 + 36)
= (8-x,-y,6)/sqrt(x2 – 16x + y2 + 100)

Note that we are normalizing L here.

N . L = 6/sqrt(x2 – 16x + y2 + 100)

V = (a-x,b-y,c)/sqrt((a-x)2 + (b-y)2 + c2)

R

= 2N(N . L) – L

= (0,0,2)*6/sqrt(x2 – 16x + y2 + 100) – (8-x,-y,6)/sqrt(x2 – 16x + y2 + 100)

= ((0,0,12) – (8-x,-y,6))/sqrt(x2 – 16x + y2 + 100)

= (x-8,y,6)/sqrt(x2 – 16x + y2 + 100)
R . V

= ((a-x)(x-8), (b-y)y, 6c)/(sqrt((a-x)2 + (b-y)2 + c2)*sqrt(x2 – 16x + y2 + 100))
So our equation looks like:

I = Iaka + Ip[kd(6/sqrt(x2 – 16x + y2 + 100)) + ks(((a-x)(x-8), (b-y)y, 6c)/(sqrt((a-x)2 + (b-y)2 + c2)*sqrt(x2 – 16x + y2 + 100)))n]

We can simplify this nasty-looking equation slightly by rewriting it as:

I = Iaka + Ip[kd(6/sqrt(x2 – 16x + y2 + 100)) + ks(((a-x)(x-8), (b-y)y, 6c)/((a-x)2 + (b-y)2 + c2)*(x2 – 16x + y2 + 100)))n/2]

Computing it in practice isn’t nearly this nasty; we’d just call (for instance) something like L.normalize() and that would be the end of the matter.

TODO: Last part. Any hints?
4.
Figure 1 shows a computational pipeline for taking a scene description and rendering that scene on a graphics device. The pipeline has been broken down into 4 processes, indicated in the square boxes, and 4 data-structures, shown in the oval boxes. The idea is that the scene can be manipulated at frame rates by altering certain parameters.
(a)
What format would you expect the 3D polygon information to be provided in at the level of an abstract data-structure? Is any further 
information required to be made explicit later on in the pipeline, and if so what?

I don’t know if it’s what you’re after, but a simple POD type like:
public class Polygon

{


public Point3d[] m_vertices;

public Vector3d m_normal;
}

would probably work fine. Or (to give a version from existing C++ code):

struct geom_Polygon

{


geom_Vector m_normal;


std::vector<geom_Vector> m_vertices;


void calculate_normal()


{



geom_Vector v1(m_vertices[1]-m_vertices[0]), v2(m_vertices[2]-m_vertices[0]);



m_normal = geom_Vector::cross_product(v1,v2).normalize();


}

};

Of course, if we wanted to do interesting things with lighting, we could have something like:

public class Polygon

{


public Point3d[] m_vertices;


public Vector3d[] m_vertexNormals;


public Vector3d m_faceNormal;
}

If we wanted to add texture-mapping, it could get even more interesting. Then we’d maybe add something like a GLuint, to store our texture name. Maybe we’d also like a lightmap (3D games don’t have the time to try and compute nice-looking lighting on-the-fly while simultaneously trying to render the rocket that’s coming your way). That would be stored in another texture (most likely), so we’d need another GLuint.
As far as any further information that’s required, we need to have a convention as to the winding order of our vertices (clockwise or counter-clockwise, from the perspective of the viewer). This gets handled by the back-face culling further down the pipeline.
(b)
Outline a possible format for the data in the 4 data-structures shown. Why have two polygon list structures been used instead of one?

Polygon List 1
Just a list of polygons of the above type.
Polygon List 2
Similar, but we don’t need some of the data any more (like the normals), and the vertices will be homogenous ones by this stage (we’ll need to divide by w after the perspective viewing transformation).
Z-Buffer
How about (for a 32-bit z-buffer):

long *largeBuffer = new long[SCREEN_HEIGHT*SCREEN_WIDTH];
Essentially, we just need a large enough array of 32-bit values so that there’s one for each pixel on the screen. Each long contains a depth value. Initially, we clear the z-buffer by setting all of the longs to INT_MAX. We then write into the z-buffer if the current pixel is nearer than any previous ones we wrote into the buffer.
Screen Buffer
As before (for 32-bit colour):

long *largeBuffer = new long[SCREEN_HEIGHT*SCREEN_WIDTH];
This time, each long is divided into four parts of 8-bits each, one for each of red, green, blue and (optionally) alpha. We initialise everything to zero. If we wanted 16-bit colour instead, we could use a short instead of a long. We could divide it either into 5 bits for each of red, green and blue and 1 bit for alpha, or 5 bits for red, 6 bits for green (because of a reason such as the eye being more sensitive to changes in green) and 5 bits for blue.
(c)
What are the extra parameters ‘VP’ and ‘LP’ that are feeding into the system?

Difficult to say. (Inquiring minds want to know, etc…)
(d)
It is now required to alter the pipeline to remove the z-buffer and to use a sorting algorithm together with the painter’s algorithm instead. 
Amend the diagram of figure 1 to show the altered data-structures and processes, and briefly explain the working of your new pipeline. 
(Your answer need not attempt to handle correctly the case of polygons that overlap.)
See attached sheet.
Basically, instead of rasterising and checking the z-buffer as we’re doing it, we pre-sort all the (transformed) polygons by their farthest z-value (the greatest z-value of any of their vertices) to form a new polygon list. We then rasterise the polygons starting from the one with the largest farthest z-value and working towards the nearest.
(e)
Briefly explain how a BSP tree could be added to your answer for part (d) to handle overlapping polygons.

When building the BSP tree, we split any polygons which cross a split-plane into two. Then, when we come to render the BSP tree, there are no overlapping polygons left (because we split any that were overlapping). To render it, we start from the top, recursively check which side of a split-plane we’re on, render the far side first and then the near side. As far as adding the BSP to the pipeline goes, we simply replace the bit from “Sort by … -> Rasterisation” with “Build BSP tree -> Tree -> Render BSP tree”. Alternatively, we can build the BSP at the start, and then render it as just explained a polygon at a time, when the bit at the end would look like “Polygon list 2 -> Rasterisation -> Screen buffer”. This would be very slow, though, because rendering individual polygons is not a good way of doing things (think “data bottleneck”).
5.

Outline how the Bézier and B-spline basis matrices MB and MBs are used to define curves in space, and how MB can be used to define a surface patch.

The two-dimensional points P0-P6 are defined as follows:

	n
	0
	1
	2
	3
	4
	5
	6

	Pn
	(-3,1)
	(-2,1)
	(-1,0)
	(0,0)
	(1,0)
	(2,1)
	(3,1)


Points P0-P3 and P3-P6 are used to define two Bézier curve segments. By direct substitution into the equations for the curves verify that they form a single curve that is C1 continuous throughout.

It is now required to extend the single curve formed from these seven points by adding three extra points P7-P9 so that the resulting composite curve is also C1 continuous and ends at the point (3,2). Write down coordinates for the three new points.
The matrices MB and MBs are given by

MB =
[-1
3
-3
1]


[3
-6
3
0]


[-3
3
0
0]


[1
0
0
0]

MBs = 1/6
[-1
3
-3
1]



[3
-6
0
4]



[-3
3
3
1]



[1
0
0
0]
Answer:

(i)
Bézier curves
Given the matrix MB and four control points P1,…,P4, we have:
P =
[P1
P2
P3
P4]
*
MB
*
[t3
t2
t
1]T
giving us the equation:

P = (1 – t)3P1 + 3t(1 – t)2P2 + 3t2(1 – t)P3 + t3P4
This is the parametric equation of a curve (it defines a curve in space).
B-spline curves
Given the matrix MBs and m + 1 control points P0,…,Pm, we have m – 2 segments Q3,…,Qm s.t.
Qi(t) =
[Pi-3
Pi-2
Pi-1
Pi]
*
MBs
*
[t3
t2
t
1]T
This is the parametric equation of a curve segment.
Bézier surface patches
Instead of four control points, we now have sixteen, arranged in a 4x4 grid. Our patch depends on two parameters rather than one:
Q(s,t) = TTMBTGMS

where T = [t3 t2 t 1]T, S = [s3 s2 s 1]T and G = (gij) for 1 <= i,j <= 4, where the gijs are the control points.
(ii)
The equations for the curves are

c1 = (1 – t)3P0 + 3t(1 – t)2P1 + 3t2(1 – t)P2 + t3P3
c2 = (1 – t)3P3 + 3t(1 – t)2P4 + 3t2(1 – t)P5 + t3P6
Differentiating with respect to t, we have:
d/dt(3t(1-t)2) = 3(t.2(1-t).-1 + (1-t)2)

= -6t(1-t) + 3(1-t)2
= 3(t – 1)(2t + (t – 1))

= 3(t – 1)(3t – 1)
c1’ = -3(1 – t)2P0 + 3(t – 1)(3t – 1)P1 + 3t(2 – 3t)P2 + 3t2P3
c2’ = -3(1 – t)2P3 + 3(t – 1)(3t – 1)P4 + 3t(2 – 3t)P5 + 3t2P6
If the composite curve is C1 continuous, then the gradient at P3 in each curve should be the same:
In the first curve, c1 = P3 when t = 1, when c1’ = 3(2-3)P2 + 3P3 = 3(P3 – P2)
In the second curve, c2 = P3 when t = 0, when c2’ = -3P3 + 3P4 = 3(P4 – P3)
All that is required for these to be equal is that P3 – P2 = P4 – P3. Both are (1,0) in the above, so the composite curve is certainly C1 continuous.
(iii)

The three new points are:

P7
(4,1)
To get C1 continuity, we require that P7 – P6 = P6 – P5 = (1,0)
P8
(?,?)
Could be anything, as far as I can see
P9
(3,2)
Bézier curves end at their last control point

6.

(a) Explain what is meant by joining two parametric curves with (i) C0 continuity, (ii) C1 continuity, and (iii) G1 continuity.

Answer:

(i)
The end of the first curve is the start of the second.
(ii)
C0 continuity ^ the tangent at the end of the first curve equals the tangent at the start of the second.

(iii)
C0 continuity ^ the tangents lie along the same line (but may have different magnitudes)

(b)

A Bézier curve is defined in two dimensions by the four control points (0,0), (125,250), (125,125) and (125,0). Sketch this curve. It is required to define a second Bézier curve whose ends meet the ends of the first curve with C1 continuity. Write down the coordinates of the four control points for this new curve.
Answer:
For sketch see attached sheet.

The four control points for the new curve are:

(125,0), (125,-125), (-125,-250), (0,0)

To get C1 continuity, we require that (when the control points of the first curve are P1,…,P4 and those of the second curve are P4,P5,P6,P1) P5 – P4 = P4 – P3 and P1 – P6 = P2 – P1.

7.

Prove that the results of interpolating vertex information across a polygon’s edges and scan lines are independent of orientation in the case of triangles. [Note: you will need the fact that if p is a point interior to a well-formed triangle with vertices v1, v2 and v3 then we can write p = Σi λi vi for unique positive λi with Σi λi = 1.]
{

For future reference: The relevant bit of CGPP is pp.736-7 and the explanation of orientation dependence on p.740.

}

Answer:

We first assert that the results of interpolating vertex information just along an edge is independent of orientation.

Then we take a point p, which is interior to the triangle v1,v2,v3. As stated in the question, there exist unique positive λi s.t.

Σi λi vi = p and Σi λi = 1
Or to write it out in full:

λ1v1 + λ2v2 + λ3v3 = p
λ1 + λ2 + λ3 = 1
We note that the first equation can be written as:
p = v1 + μ1(v2 – v1) + μ2(v3 – v1)

for unique coefficients μi, and the same would be true if we started at another vertex (instead of v1).
Suppose the scan line on which p lies has direction vector d. Then the line equation can be written as:
r = p + td
where t is a parameter.

We want to find where this line intersects each of v1-v2 and v1-v3, i.e. where (for v1-v2)
p + td = v1 + u(v2-v1)

where u is also a parameter.

v1 + μ1(v2 – v1) + μ2(v3 – v1) + td = v1 + u(v2-v1)
μ1(v2 – v1) + μ2(v3 – v1) + td = u(v2-v1)

Well, this is just a pair of simultaneous equations in two unknowns:

μ1(v2.x – v1.x) + μ2(v3.x – v1.x) + td.x = u(v2.x – v1.x)

μ1(v2.y – v1.y) + μ2(v3.y – v1.y) + td.y = u(v2.y – v1.y)

u = (μ1(v2.x – v1.x) + μ2(v3.x – v1.x) + td.x) / (v2.x – v1.x)

μ1(v2.y – v1.y) + μ2(v3.y – v1.y) + td.y = ((μ1(v2.x – v1.x) + μ2(v3.x – v1.x) + td.x) / (v2.x – v1.x))*(v2.y – v1.y)

(μ2(v3.y – v1.y) + td.y)*(v2.x – v1.x) = (μ2(v3.x – v1.x) + td.x)*(v2.y – v1.y)
t(d.y*(v2.x – v1.x) – d.x*(v2.y – v1.y))

= μ2(v3.x – v1.x)*(v2.y – v1.y) – μ2(v3.y – v1.y)*(v2.x – v1.x)
= μ2((v3.x – v1.x)*(v2.y – v1.y) – (v3.y – v1.y)*(v2.x – v1.x))

t = (μ2((v3.x – v1.x)*(v2.y – v1.y) – (v3.y – v1.y)*(v2.x – v1.x))) / (d.y*(v2.x – v1.x) – d.x*(v2.y – v1.y))

This is getting rather algebra-heavy again (and my enthusiasm for algebra-churning is no longer what it once was). Essentially, what I want to show is that when we calculate the points on either end of the scan line, and calculate the interpolated values at those points, and then interpolate those values along to p, we always end up with the same result. The mess I’ve just derived, however, suggests that this is probably not the best way of going about things.
Even having done this, I’d then have to show that it’s still true if we take a different pair of edges. The whole things seems remarkably long and painful. Is there a better way? 
