Stuart Golodetz

Computer Graphics

Exercises 3
Disclaimer: This sheet was a tad tricky, to the extent that I may have got a significant amount of it wrong. Apologies in advance!

1. Consider a line in 3D going from the world-coordinate point P1 (6,10,3) to P2 (-3,-5,2) and a semi-infinite viewing pyramid in the region

-z <= x <= z, -z <= y <= z, which is bounded by the planes z = +x, z = -x, z = +y, z = -y. The projection plane is at z = 1.

(a) Clip the line in 3D (using parametric line equations), then project it onto the projection plane. What are the clipped endpoints on the plane?

Let v = P2 - P1 = (-9, -15, -1)

Then r = P1 + t.v represents the line, where t is a parameter.

r = (6-9t, 10-15t, 3-t)

We need to check where it hits each of the planes in turn (I've rearranged them in order of ascending t-values).

i) It intersects z = x when 6-9t = 3-t -> 8t = 3 -> t = 3/8

This is at: (2+5/8, 4+3/8, 2+5/8)

This is above z = y, and so continuing doesn't take us into the viewing pyramid.

ii) It intersects z = y when 10-15t = 3-t -> 14t = 7 -> t = 1/2

This is at: (1+1/2, 2+1/2, 2+1/2)

This is to the left of z = x, so continuing takes us into the viewing pyramid.

iii) It intersects z = -x when 6-9t = t-3 -> 10t = 9 -> t = 9/10

This is at: (-(2+1/10), -(3+1/2), 2+1/10)

Crossing any of the planes will take us out of the viewing pyramid again.

iv) It intersects z = -y when 10-15t = t-3 -> 16t = 13 -> t = 13/16

This is at: (-(1+5/16), -(2+3/16), 2+3/16)

So our clipped line segment is from (1.5, 2.5, 2.5) to (-2.1, -3.5, 2.1). Our focus f = 1, since the projection plane is at z = 1.

For each of the two endpoints:

(1.5, 2.5, 2.5) -> (1.5*1/(2.5+1), 2.5*1/(2.5+1)) = (3/7, 5/7)

(-2.1, -3.5, 2.1) -> (-2.1*1/(2.1+1), -3.5*1/(2.1+1)) = (-21/31, -35/31)

(b) Project the line onto the plane, then clip the lines using 2D computations. What are the clipped endpoints on the plane?

To project the line onto the plane, we're going to project its endpoints, and then determine the 2D line which joins the projected points (mainly

because this is the easiest way I could think of to do it):

(6,10,3) -> (6*1/(3+1), 10*1/(3+1)) = (3/2, 5/2)

(-3,-5,2) -> (-3*1/(2+1), -5*1/(2+1)) = (-1, -5/3)

Gradient:

-5/3 - 5/2

=
5/3

 -1 - 3/2

y + 5/3 = 5/3(x + 1)

3y + 5 = 5x + 5

y = 5x/3 (which was kind of obvious, anyway, from the endpoints)

We clip this against the boundaries: x = 1, x = -1, y = 1, y = -1.

When x = 1, y = 5/3

When x = -1, y = -5/3

When y = 1, x = 3/5

When y = -1, x = -3/5

The clipped endpoints are therefore: (3/5,1) and (-3/5,-1). These are not the same as those generated by the 3D clipping. Of course, this may have been the point the question was trying to make. Or then again, it may not (it may have been trying to make the opposite point, only I messed it up!) Time will tell...

2. A graphics engine for viewing three-dimensional worlds has a geometric database that contains only triangular facets of a set of polytopes.

Currently the two triangles ABC and DEF are being viewed by a camera which is placed at (-20,0,0). The view-plane normal of the camera points in the positive x-direction directly at the origin, the view up (VUP) direction is (0,1,0) and the view is orthogonal parallel.

(a) Give an homogenous matrix that actively transforms from the world coordinate system to the camera's own (u,v,n) coordinate system.

(x,y,z) -> (-y, z, x+20)

So the matrix we want is:

(0
-1
0
0)

(0
0
1
0)

(1
0
0
20)

(0
0
0
1)

Since:

(0
-1
0
0)(x) (-y)

(0
0
1
0)(y) = (z)

(1
0
0
20)(z) (x+20)

(0
0
0
1)(1) (1)

(b) The coordinates of the vertices of the two triangles are

A = (0,0,0),
B = (-10,10,0),
C = (-10,10,-5)

D = (-3,-5,0),
E = (-3,2,0),
F = (-3,2,-5)

Draw a rough sketch of the camera and the triangles as they appear in the plane z = 0. What are the coordinates of the vertices of the triangles in the (u,v,n) coordinate system?

Sketch: See accompanying sheet.

Coordinates (in the (u,v,n) coordinate system):

A
(0,0,20)

B
(-10,0,10)

C
(-10,-5,10)

D
(5,0,17)

E
(-2,0,17)

F
(-2,-5,17)

Note: It matters which way round the u vector is; in this case it points in the -y direction. In the diagrams in CGPP, it points the other way.

3.

(a) The transformation to get the camera to where it is is:

RotY(-beta) . RotZ(alpha) . Translate(A,0,0) . RotY(beta) . Translate(b, 0, -C) . RotY(-delta) . RotZ(gamma)

The answer we want is the inverse of this, namely:

RotZ(-gamma) . RotY(delta) . Translate(-b, 0, C) . RotY(-beta) . Translate(-A,0,0) . RotZ(-alpha) . RotY(beta)

(b)

The camera is horizontal, so delta = 0.

Furthermore, since it's horizontal and points at (20,12,8), it must itself be at height 8. Using the values of A and C we're given, and referring to

the side view diagram, we can derive that 20 sin beta - 2 = 8 -> beta = 30 degrees.

Referring to Diagram 1 (see accompanying sheet), it's clear that the camera must lie on the line which lies in the plane y = 12 and passes through

(20,12,10) and (24,12,12). If it didn't lie on this line, one point wouldn't cover the other. Since it's also horizontal, the camera must lie at

(16,12,8), by a similar triangles method (see diagram). This immediately tells us a number of things:

The value of alpha is arctan(12/16) = arctan(3/4) = 48.6 degrees (3SF)

The value of gamma is -alpha = -48.6 degrees (3SF), since the camera is looking in the positive x direction

The value of b can be calculated relatively straightforwardly, since the horizontal distance between O and a point directly beneath Q is the same

as the horizontal distance between O and a point directly beneath P added to b:

20 cos beta + b = sqrt(16^2 + 12^2) = sqrt(400) = 20

b = 2.68 (3SF)

4.

Primitive instancing:

Use a half-ray test.

B-rep:

Use a half-ray test: if the number of intersections is odd, we're inside the solid, otherwise we're not.

Spatial occupancy enumeration:

We have a large 3D array representing whether regular cubic regions are solid or empty. To check whether our point is inside a given solid, all we have to do is check whether the cubic region containing it is solid or not.

BSP trees:

Starting from the root node, classify the point against the node's plane (either explicitly, using the plane equation, or using the dot-product

method) and recurse down the appropriate side of the tree. If we end up in a leaf, return whether it is solid or empty. A minor complication arises

if the point is on one of the planes. In that case, we recurse down both sides of the tree. If both calls return solid, we return solid, if both return

empty we return empty. If one returns solid and the other returns empty, our point is on the surface of the solid. We can return whatever we like, in theory, but here we'll choose to return that it's on the surface (we could have chosen solid or empty, if we'd wanted to).

Pseudo-code (based loosely on a function called determine_leaf_index from my Neptune engine code):

PMC bsp_Tree::classify_point(const geom_Vector& point, Node *pCur = NULL) const

{

if(!pCur)

{

assert(m_pRoot);

pCur = m_pRoot;

}

while(!pCur->m_bIsLeaf)

{

switch(geom_Util::classify_against_plane(point, pCur->m_splitter))

{

case geom_Util::CP_BACK:

{

// Note that left = front, right = back in this BSP tree implementation.

return classify_point(point, pCur->m_pRight);

}

case geom_Util::CP_COPLANAR:

{

PMC pmcl = classify_point(point, pCur->m_pLeft);

PMC pmcr = classify_point(point, pCur->m_pRight);

return pmcl == pmcr ? pmcl : PMC_SURFACE;

}

case geom_Util::CP_FRONT:

{

// Note that left = front, right = back in this BSP tree implementation.

return classify_point(point, pCur->m_pLeft);

}

}

}

return pCur->m_bIsSolid ? PMC_SOLID : PMC_EMPTY;

}

CSG:

We check whether it's in each of the primitive solids, then combine the results.

Pseudo-code:

pmc (Union a b) = union (pmc a) (pmc b)

pmc (Intersect a b) = intersect (pmc a) (pmc b)

pmc (Diff a b) = diff (pmc a) (pmc b)

union I _ = I

union _ I = I

union E x = x

union x E = x

union S S = S

intersect I x = x

intersect x I = x

intersect E _ = E

intersect _ E = E

intersect S S = S

diff I I = E

diff I S = S

diff I E = I

diff S I = E

diff S S = S

diff S E = S

diff E I = E

diff E S = E

diff E E = E

Note: This last one wasn't given in the notes, so I can't guarantee I've got it right. Assuming I have, the table is:

 I S E

I E S I

S E S S

E E E E

(alternatively, we could transpose it, if we thought the things across the top should be the left parameter instead)

So our function simplifies to:

diff _ I = E

diff E _ = E

diff x E = x

diff I S = S

diff S S = S

5.

Primitive instancing:

Not sure.

B-rep:

Do essentially the same thing as for a solid leaf in the method for BSPs, below, only build the planes on which the boundary polygons reside first.

Spatial occupancy enumeration:

It's easy, you just check whether there are any solid cubic regions or not.

BSP trees:

You walk over the tree to build a list of solid leaves, then proceed as follows:

Either

For each leaf

{

Walk back up the tree collecting a list of planes which bound it - reverse the directions of planes it's in front of, so that now all the planes

point outwards away from the leaf

Check whether there is any pair of planes which are coplanar and have opposite normals - if so, it's a null leaf

}

Or (approximation method)

For each leaf

{

Walk back up the tree collecting a list of planes which bound it - reverse the directions of planes it's in front of, so that now all the planes

point outwards away from the leaf

We want to find a point which is behind all these planes (and thus in the solid leaf)

- Choose any point on the first plane in our list, then move it backwards by slightly more than EPSILON in the direction opposite to the
 normal

- Repeatedly classify the point against other planes; if it's in front of them, move the point towards the plane by slightly more than

 EPSILON more than the perpendicular distance of the point from the plane. In other words, move the point so that it's slightly behind
 the plane.

- Classify the resulting point; if it's in our leaf, then it wasn't a null leaf, otherwise it was (assuming we chose EPSILON carefully).

}

If there are only null leaves, it's the null object, otherwise it's not.

CSG:

Not sure, short of building BSP trees for all the solid objects, performing the actual set operations on them to form a BSP tree for the whole lot, and using the BSP method. Of course, the BSP method might be wrong as well (I'm not sure about it). Then we'd be truly in a mess!

6.

unionQt :: Qt -> Qt -> Qt

unionQt qt1 (Leaf Black) = Leaf Black

unionQt (Leaf Black) qt2 = Leaf Black

unionQt qt1 (Leaf White) = minimiseQt qt1

unionQt (Leaf White) qt2 = minimiseQt qt2

unionQt (Branch qt11 qt12 qt13 qt14) (Branch qt21 qt22 qt23 qt24) = minimiseQt (Branch (unionQt qt11 qt21) (unionQt qt12 qt22) (unionQt qt13 qt23) (unionQt qt14 qt24))

minimiseQt :: Qt -> Qt

minimiseQt (Leaf c) = Leaf c

minimiseQt (Branch qt1 qt2 qt3 qt4) = tryAndCombineQts mqt1 mqt2 mqt3 mqt4

where

mqt1 = minimiseQt qt1

mqt2 = minimiseQt qt2

mqt3 = minimiseQt qt3

mqt4 = minimiseQt qt4

tryAndCombineQts :: Qt -> Qt -> Qt -> Qt -> Qt

tryAndCombineQts (Leaf c1) (Leaf c2) (Leaf c3) (Leaf c4) = if c1 == c2 && c2 == c3 && c3 == c4 then Leaf c1

 else Branch (Leaf c1) (Leaf c2) (Leaf c3) (Leaf c4)

tryAndCombineQts qt1 qt2 qt3 qt4 = Branch qt1 qt2 qt3 qt4

And it's always nice to be able to see that it works, so here are some simple drawing routines to do the trick:

drawQuadtree :: Int -> Qt -> [[String]]

drawQuadtree size (Leaf White) = replicate size (replicate size " ")

drawQuadtree size (Leaf Black) = replicate size (replicate size "##")

drawQuadtree size (Branch qt1 qt2 qt3 qt4) = (map combinePairs (zip (drawQuadtree (size `div` 2) qt1) (drawQuadtree (size `div` 2) qt2))) ++ (map combinePairs (zip (drawQuadtree (size `div` 2) qt3) (drawQuadtree (size `div` 2) qt4)))

where

combinePairs (xs,ys) = xs ++ ys

outputQuadtree :: [[String]] -> IO()

outputQuadtree = putStr . concatMap (\s -> s ++ "\n") . map concat

output :: Qt -> IO ()

output qt = outputQuadtree (drawQuadtree 16 qt)

7.

(a)

B-rep:

Store all the polygons which bound the solid object.

CSG:

Example data structure (not necessarily a good one) - data CSG = Cube <properties> | Cylinder <properties> | Union (CSG) (CSG) | ...

We start off with a number of primitive solids we can create (cube, cylinder, etc.) We combine them using set operations (union, intersection, difference) to form more complicated objects.

Octree:

Example data structure - data Ot = Empty | Full | Branch (Ot) (Ot) (Ot) (Ot) (Ot) (Ot) (Ot) (Ot)

Consider some cuboid* region containing the solid object we want to model. If it's entirely full (or at least, as full as we care about to some degree of precision), return Full; if it's entirely empty, return Empty; if it's partly full and partly empty then bisect it in each of the three axes and recurse on the eight new smaller cuboids.

(*) Usually cubes are used, but there's nothing stopping us generalising to cuboids.

BSP tree:

Example data structure - data BSP = Empty | Solid | Node (Plane) (BSP) (BSP)

Split the region into half-spaces as follows -

Until we're done

{

Choose a plane

Build a tree with the plane at the root node and two BSP child nodes for the half-spaces on either side of the plane

}

In practice, we use the planes in which the polygons of our solid object reside, and stop when we run out of planes across which to split.

Side note: It's not actually necessary to use only the planes in which our polygons reside. In practice, you can often generate better trees by having additional planes to split along. Some level editors allow you to put hint planes in as an optimisation along these lines.

(b) See accompanying sheets.
