Stuart Golodetz
Computer Graphics

Exercises 2
1.

If the clipping region is convex, there is no way in which part of the polygon being clipped can lie behind any one of the region's edges and

still be in the region. This isn't the case for concave polygons (see diagram), which is why it only works for convex regions. There is a more

complicated way of doing it which works in general, however. Referring to the diagrams, consider building a binary space partition tree with

the edges of the clipping region (Diagram 2). We then pass the polygon to be clipped down the tree from the root, doing the following at each

stage:

i) If the polygon is entirely in front of (the infinite line representing) the region edge at that node, then we pass it down the front side of

the tree.

ii) If it's entirely behind the same, then we pass it down the back side of the tree.

iii) If it straddles the same, then we split it in two and pass each half down the respective side of the tree.

iv) We retain any polygon fragments which end up in "empty" space (namely, inside the clipping region) and discard any which end up in "solid" space (namely, outside the clipping region).

v) If we're being cunning, we then recombine the polygon fragments into convex polygons as much as possible. One simple way to do this (although it doesn't always work brilliantly) is to store the polygon fragments as a vector while we're passing them down the tree, keeping track of the two "child" fragments of a fragment when we split it. We then work back from the end of the vector, recombining child fragments into

their parents if both survived the clipping process.

Something remains to be said about how to build a BSP tree. Since I suspect that (a) you're very likely to know and (b) you won't want to read

a lot of spiel about it either way, I'll simply refer to Graphics Programming Black Book (Special Edition) by Mike Abrash, among (a large

number of) other books, and leave it at that!

2.

Given the optional part of this question, the simplest strategy seems to be to compute the intersection point of the infinite lines on which

the edges lie, and then check whether it's between the two points on each line which specify the edges.

Let p = b - a, q = d - c and s and t be scalars

The edge A lies on the infinite line specified by the line equation:

r1 = a + sp

The edge C lies on the infinite line specified by the line equation:

r2 = c + tq

They intersect when a + sp = c + tq. This gives us two linearly independent equations to solve for s or t:

a.x + s*p.x = c.x + t*q.x

a.y + s*p.y = c.y + t*q.y

Solve by substitution:

s = (c.x + t*q.x - a.x)/p.x

a.y + (c.x + t*q.x - a.x)*p.y/p.x = c.y + t*q.y

a.y*p.x + c.x*p.y + t*q.x*p.y - a.x*p.y = c.y*p.x + t*q.y*p.x

t = (a.y*p.x + c.x*p.y - a.x*p.y - c.y*p.x)/(q.y*p.x - q.x*p.y)

If 0 <= t <= 1 then the point is within the edge on C. We proceed to compute s (using our value for t). If 0 <= s <= 1 then the point is within

the edge on A also. In this case, the edges overlap and we can calculate the point easily as c + tq for our value of t (or a + sp, for that

matter).

Here's a concrete version of the algorithm in C++ (because I wanted to test it out to make sure it was right, and I hate putting in the effort

to write unnecessary code unless I'm going to hand it in...)

std::pair<bool,geom_Vector> edge_edge_intersect(const geom_Vector& a, const geom_Vector& b, const geom_Vector& c, const geom_Vector& d)

{

// Note: This is a very inefficient way of writing this function. In practice, we'd write things like geom_Vector p(b); p -= a;

// instead of what we've got below, but that would obfuscate the code. The reason we don't want to do it this way is that

// operators like - must return by value, whereas the -= operator can return by reference, which is substantially more efficient,

// especially if you do it a lot. (As an example, in a BSP compiler I once wrote, making a change like this in a function which

// was getting called huge numbers of times speeded the thing up by about a factor of 10.) In practice, things like edge_edge_intersect

// tend to get called enough times per frame to make it worth optimising.

bool intersect = false;

geom_Vector p = b - a, q = d - c;

double t = (a.m_y*p.m_x + c.m_x*p.m_y - a.m_x*p.m_y - c.m_y*p.m_x)/(q.m_y*p.m_x - q.m_x*p.m_y);

if(0 <= t && t <= 1)

{

double s = (c.m_x + t*q.m_x - a.m_x)/p.m_x;

if(0 <= s && s <= 1) intersect = true;

}

geom_Vector intersectionPoint = c + q*t;

return std::make_pair(intersect, intersectionPoint);

}

3.

Convex polygon:

The maximum number of vertices in the resulting clipped polygon is n + 4. Consider the following observations:

i) Clipping against a rectangle is the same as clipping against each of its four edges sequentially.

ii) For each rectangle edge we have several possibilities:

a) The edge doesn't intersect the polygon at all (no change). Note that this includes just touching one of the vertices, or running along one of

 the edges.

b) The edge intersects the polygon and passes through two polygon edges. Suppose there are m vertices on the perimeter of the polygon between

 the two intersection points (on the side to be clipped). By clipping against this edge, we are eliminating those vertices, and adding two

 new ones at the intersection points. So the net number of vertices increases by 2 - m (which may well be negative). It's readily apparent

 that m cannot be 0 (the rectangle edge can't intersect the same polygon edge twice), so the smallest value of m must be 1, and hence the

 greatest increase in vertices in this scenario is 2 - 1 = 1.

c) The edge intersects the polygon and passes through two vertices. Suppose there are m vertices on the perimeter of the polygon between(*) the

 two intersection points (on the side to be clipped). By clipping against this edge, we are eliminating those vertices, and not adding any

 new ones. So this merely decreases the number of vertices by m. (*) Note that between in this instance is exclusive of the two vertices which

 the rectangle edge passes through.

d) The edge intersects the polygon and passes through a polygon edge and a vertex. Suppose there are m vertices on the perimeter of the polygon

 between(*) the two intersection points (on the side to be clipped). By clipping against this edge, we are eliminating those vertices, and

 adding one new one at the intersection point with the polygon edge. So the net number of vertices increases by 1 - m. Clearly m cannot be 0,

 because then the rectangle edge would merely run along the polygon edge, so it must be at least 1. So the number of vertices cannot increase

 in this scenario. (*) Note that between in this instance is exclusive of the vertex which the rectangle edge passes through.

iii) As a consequence of the above, each clipping edge can increase the number of vertices by at most one. Since there are four edges, the number of extra vertices added to a polygon of n edges by clipping against a rectangle is at most n + 4.

The minimum number must surely be 0 (even though it makes the question seem strange), since if the polygon is entirely outside the rectangle

then it will be clipped in its entirety.

Non-convex polygon:
The pathological case for a non-convex polygon must be something like:

|\ --------------------

|#\ \/\/\/\/\/\/\/\/\##|

|#/ \#|

|#\ /#|

|#/ \#|

|#\ /#|

|#/ \#|

|#\ /#|

|##\/\/\/\/\/\/\/\/\/##|

where the # marks represent the inside of the polygon (in other words, the spikes face inwards). Note that we can't join up the top-left of the

diagram, because then it wouldn't be a polygon as such. Now, suppose the clip rectangle passes through the polygon edges halfway up all the

spikes. Then the number of polygons which might result would be the number of spikes.

For the largest number of vertices, consider a spiky polygon like the above, only this time in the middle of the screen with the spikes facing outwards. Then, again supposing the clip rectangle passes through halfway up all the spikes, we add an edge (and an extra vertex) for each spike we clip off. For an n-vertex polygon, there are n/2 spikes, so there can be n+n/2 = 3n/2 vertices in the resulting polygon at most.
4.

Program A

The amount of data needing to be transferred is 200 * 400 * 2 bytes = 160000 bytes

The amount of data we could transfer per micro-second if we had 100% bus utilisation is 2 * 8.33 = 16.66 bytes

So it would take us 160000/16.66 = 9604 micro-seconds (to the nearest micro-second) to transfer all the data across

As it happens, we only have 50% bus utilisation, so it will take us twice as long, namely 19208 micro-seconds, or 19.2 milli-seconds

This gives us a frame rate of about 52 fps (frames per second), if we do nothing but update the frame

Program B

The amount of data needing to be transferred is 105 * 10 bytes = 106 bytes

The amount of data we could transfer per micro-second if we had 100% bus utilisation is 4 * 33 = 132 bytes

So it would take us 106/132 = 7576 micro-seconds (to the nearest micro-second) to transfer all the data across

As it happens, we only have 80% bus utilisation, so it will take us 1/0.8 times as long, namely 9470 micro-seconds, or 9.5 milli-seconds

This gives us a frame rate of about 106 fps, if we do nothing but update the frame

Program C

The amount of data needing to be transferred is 105 * 200 bytes = 2*107 bytes

The amount of data we could transfer per micro-second if we had 100% bus utilisation is 8 * 264 = 2112 bytes

So it would take us 2*107/2112 = 9470 micro-seconds (to the nearest micro-second) to transfer all the data across

As it happens, we only have 90% bus utilisation, so it will take us 1/0.9 times as long, namely 10522 micro-seconds, or 10.5 milli-seconds

This gives us a frame rate of about 95 fps, if we do nothing but update the frame

5.

Let t = theta

(cos t
-sin t)(sx
0) = (sx*cos t

-sy*sin t) = A

(sin t
cos t)(0
sy) (sx*sin t

sy*cos t)

(sx
0)(cos t
-sin t) = (sx*cos t
-sx*sin t) = B

(0
sy)(sin t
cos t) (sy*sin t
sy*cos t)

Well, A[1,1] = B[1,1] = sx*cos t, and A[2,2] = B[2,2] = sy*cos t. But 2D rotation and scaling by definition commute when (and only when) A = B, or in other words when A[2,1] = B[2,1] and A[1,2] = B[1,2]. Thus:

sx*sin t = sy*sin t

-sy*sin t = -sx*sin t

These two equations are identical except for a sign, so we'll simply work with the first one:

sx*sin t = sy*sin t

(sin t)(sx - sy) = 0

So sin t = 0 or sx - sy = 0. If the former, t = n*PI for some integral n; if the latter, sx = sy. So since these are the only possible solutions of the equation, in all other cases 2D rotation and scaling do not commute (the only if bit). When sx = sy or t = n*PI (for integral n), however, they do commute (the if bit).

6.

RotZ(-3*PI/4) * RotY(asin(1/sqrt(3))) * RotX(theta) * RotY(-asin(1/sqrt(3))) * RotZ(3*PI/4)

7.

M = RotX(i) . RotY(-a)

T = M^-1 . RotZ(theta) . M

 = RotY(a) . RotX(-i) . RotZ(theta) . RotX(i) . RotY(-a) =

[where ca = cos a, sa = sin a, etc.]

(ca
0
sa)(1
0
0)(ct
-st
0)(1
0
0)(ca
0
-sa)

(0
1
0)(0
ci
si)(st
ct
0)(0
ci
-si)(0
1
0)

(-sa
0
ca)(0
-si
ci)(0

0
1)(0
si
ci)(sa
0
ca)
=

(ca
-sa.si
sa.ci)(ct
-st
0)(1
0
0)(ca
0
-sa)

(0
ci

si)(st
ct
0)(0
ci
-si)(0
1
0)

(-sa
-ca.si
ca.ci)(0
0
1)(0
si
ci)(sa
0
ca)
=

(ca.ct-sa.si.st
-ca.st-sa.si.ct
sa.ci)(1
0
0)(ca
0
-sa)

(ci.st

ci.ct

si)(0
ci
-si)(0
1
0)

(-sa.ct-ca.si.st
sa.st-ca.si.ct
ca.ci)(0
si
ci)(sa
0
ca)
=

(ca.ct-sa.si.st

-ca.st.ci-sa.si.ct.ci+sa.ci.si
ca.st.si+sa.si2.ct+sa.ci2)(ca
0
-sa)

(ci.st

ci2.ct+si2

-ci.ct.si+si.ci)(0
1
0)

(-sa.ct-ca.si.st

sa.st.ci-ca.si.ct.ci+ca.ci.si

-sa.st.si+ca.si2.ct+ca.ci2)(sa
0
ca)
=

(ca2.ct-sa.si.st.ca+ca.st.si.sa+sa2.si2.ct+sa2.ci2
-ca.st.ci-sa.si.ct.ci+sa.ci.si

-ca.ct.sa+sa2.si.st+ca2.st.si+sa.si2.ct.ca+sa.ci2.ca)

(ci.st.ca-ci.ct.si.sa+si.ci.sa

ci2.ct+si2

-ci.st.sa-ci.ct.si.ca+si.ci.ca)

(-sa.ct.ca-ca2.si.st-sa2.st.si+ca.si2.ct.sa+ca.ci2.sa
sa.st.ci-ca.si.ct.ci+ca.ci.si

sa2.ct+ca.si.st.sa-sa.st.si.ca+ca2.si2.ct+ca2.ci2)
T[1,1]

= ca2.ct+sa2.si2.ct+sa2.ci2
= ct(ca2 + sa2.si2) + sa2.ci2
ca = uz/sqrt(ux2 + uz2)

sa = ux/sqrt(ux2 + uz2)

ci = sqrt(ux2 + uz2)

si = uy

So T[1,1]

= ct(ca2 + sa2.si2) + sa2.ci2
= ct(uz2/(ux2 + uz2) + ux2.uy2/(ux2 + uz2)) + ux2/(ux2 + uz2).(ux2 + uz2)

= ct((uz2 + ux2.uy2)/(ux2 + uz2)) + ux2
Taking the coefficient of cos(theta), we need to show that it's equal to 1 - ux2. Well:

(uz2 + ux2.uy2)/(ux2 + uz2)

= (uz2 + ux2(1 - ux2 - uz2))/(ux2 + uz2)

= (uz2 + ux2 - ux^4 - ux2.uz2)/(ux2 + uz2)

= (1 - ux2)(ux2 + uz2)/(ux2 + uz2)

= 1 - ux2
Of course, the real way I figured this out wasn't like that at all (even a little bit tricky is "too tricky", so let's do it the easy way!); the original working was:

1 - ux2
= (1 - ux2)(ux2 + uz2)/(ux2 + uz2)

= (ux2 + uz2 - ux^4 - ux2.uz2)/(ux2 + uz2)

RTP:

ux2 - ux^4 - ux2.uz2 = ux2.uy2
Divide through by ux2:

1 - ux2 - uz2 = uy2
QED

Right, so now all we have to do is exactly the same thing for all the other matrix elements (great...)

T[1,2]

= -ca.st.ci - sa.si.ct.ci + sa.ci.si

= -uz.st + sa.ci.si(1 - ct)

= ux.uy(1 - ct) - uz.st

T[1,3]

= -ca.ct.sa + sa2.si.st + ca2.st.si + sa.si2.ct.ca + sa.ci2.ca

= st(si(sa2 + ca2)) + sa.ca(ct(si2 - 1) + ci2)

= uy.st + ux.uz/(ux2 + uz2).(ct(uy2 - 1) + (ux2 + uz2))

= uy.st + ux.uz/(ux2 + uz2).(ct(-ux2 - uz2) + (ux2 + uz2))

= ux.uz(1 - ct) + uy.st

T[2,1]

= ci.st.ca - ci.ct.si.sa + si.ci.sa

= uz.st + si.ci.sa(1 - ct)

= ux.uy(1 - ct) + uz.st

T[2,2]

= ci2.ct + si2
= ct(ux2 + uz2) + uy2
= uy2 + ct(1 - uy2)

T[2,3]

= -ci.st.sa - ci.ct.si.ca + si.ci.ca

= -ux.st + si.ci.ca(1 - ct)

= uy.uz(1 - ct) - ux.st

T[3,1]

= -sa.ct.ca - ca2.si.st - sa2.st.si + ca.si2.ct.sa + ca.ci2.sa

= st(-si(ca2 + sa2)) + ca.sa(ct(si2 - 1) + ci2)

= ux.uz(1 - ct) - uy.st

{as for T[1,3] above}

T[3,2]

= sa.st.ci - ca.si.ct.ci + ca.ci.si

= ux.st + ca.ci.si(1 - ct)

= uy.uz(1 - ct) + ux.st

T[3,3]

= sa2.ct + ca.si.st.sa - sa.st.si.ca + ca2.si2.ct + ca2.ci2
= sa2.ct + ca2.si2.ct + ca2.ci2
= ct(sa2 + ca2.si2) + ca2.ci2
= ct(ux2/(ux2 + uz2) + uz2/(ux2 + uz2).uy2) + uz2
Taking the coefficient of cos(theta), we need to show that it's equal to 1 - uz2. Well:

(ux2 + uy2.uz2)/(ux2 + uz2)

= (ux2 + uz2(1 - ux2 - uz2))/(ux2 + uz2)

= (ux2 + uz2 - ux2.uz2 - uz^4)/(ux2 + uz2)

= (1 - uz2)(ux2 + uz2)/(ux2 + uz2)

= 1 - uz2
QED

And we've finally proved our ("little"?) result. Well, except for the fact that our matrix is 3x3, whereas the one given is 4x4. But that's just a matter of changing it to the homogenous version.

Verifying as required:

When U = (1,0,0):

(1
0
0
0)

(0
ct
-st
0)

(0
st
ct
0)

(0
0
0
1)

So it does reduce to R[x]. Hooray! The other axes work as well, but typing out the respective matrices is not really my idea of a good evening in, as it were. (But they do work...honest.)

Negating both U and theta leaves the result unchanged because rotating anti-clockwise about a vector pointing in one direction is exactly the same as rotating clockwise about a vector pointing in the opposite direction.

Comment: After much careful reflection, I'm inclining to the view that I've done this the hard way. Either that, or this question was set by someone with a particular grudge against second-year undergraduates (or both?!). In any case, if there is an easier way of doing about it, I'd dearly like to hear about it (this having just taken me the best part of an hour and a half).

8.

Using the basic properties of transformations:

Define T1 : R -> W s.t. T1(<x,y,z>) = <-y,x,z>

At time t = 5, the radar unit is at <50,0,0> in W

Position[R] of T = <20,0,30>

Position[W] of T = <50,0,0> + T1(<20,0,30>) = <50,20,30>

At time t = 10, the radar unit is at <100,0,0> in W

Position[R] of T = <0,5,40>

Position[W] of T = <100,0,0> + T1(<0,5,40>) = <95,0,40>

Velocity[W] of T = (<95,0,40> - <50,20,30>)/(10 - 5) = <9,-4,2)

Using matrices:

Position[W] of T at time t = 5:

Translate(<50,0,0>) . RotZ(PI/2) . <20,0,30> = <50,20,30>

Positive[W] of T at time t = 10:

Translate(<100,0,0>) . RotZ(PI/2) . <0,5,40> = <95,0,40>

as before

Verifying the rule:

Let R[t] be the coordinate system R at time t.

Define T2(u) : R[t] -> R[t+u] s.t. T2(u)(<x,y,z>) = <x,y+10*u,z>

So the position of T at time t = 5 in R[10] is T2(5)(<20,0,30>) = <20,50,30>

So the velocity of T in R[10] is (<0,5,40> - <20,50,30>)/(10 - 5) = <-4,-9,2>

Now RotZ(PI/2)(<-4,-9,2>) gives us the velocity in W! So we didn't need to take into account the translation of the radar unit. This confirms

our rule for manipulating free vectors.
