Stuart Golodetz

Marker: Ross Duncan

Computational Complexity

Exercises 6
1.

(i)

NTIME[t] is defined to be the class of all languages with nondeterministic time complexity in O(t)

NSPACE[t] is defined to be the class of all languages with nondeterministic space complexity in O(t)

Take any language L in NTIME[t]. Then there exists a nondeterministic TM NT which decides L, and constants

n0 and c such that for all inputs x with |x| > n0, NTime[NT](x) <= ct(|x|).

Thus the number of steps of the shortest accepting path of NT(x), if any, or the shortest rejecting path,

if not, is less than or equal to ct(|x|). The path in question can only have used at most ct(|x|) + 1

cells, since the head can only move one cell per step, so NSpace[NT](x) <= ct(|x|) + 1 <= (c+1)t(|x|).

So taking c' = c+1, NSpace[NT](x) <= c't(|x|) for all |x| > n0, i.e. NSpace[NT](x) is in O(t).

Whence L is in NSPACE[t]. Thus NTIME[t] is a subset of NSPACE[t], as required.

(ii)

NP is defined to be U{k >= 0} NTIME[n^k]

PSPACE is defined to be U{k >= 0} SPACE[n^k]

Take any language L in NP. Then L is in NTIME[t] for some t = n^k (for some k). By the proof in (i),

L is also in NSPACE[t]. By Savitch's Theorem, if L is in NSPACE[t] then L is in SPACE[t^2], i.e. L

is in SPACE[n^2k]. But given the definition of PSPACE, above, this means that L is in PSPACE. So NP

is a subset of PSPACE.

2.

Because given a k-tape machine, you could put the data from all of its tapes onto one tape and only

need to add k-1 separator symbols to signify where the individual pseudo-tapes start and end. So

suppose we were using x[i] space on tape i, the space used in the original would be:

sum{i=1 to k} x[i]

and the space used in the 1-tape version would be:

(sum{i=1 to k} x[i]) + k-1

Since k-1 is a constant for a machine with any given number of tapes k, if the amount of space being

used before was O(t) then there's still only O(t) space being used afterwards. So SPACE[t] = SPACE1[t].

3.

The algorithm we use is trivial:

count := 0

while not at end of input

if next symbol is (, increment count

if next symbol is)

if count > 0, decrement count

if count = 0, return false

done

return count = 0

This uses just enough space to store the counter in binary. The maximum value of the counter is the length

of the input, in the pathological case where the input is of the form ((...(, i.e. all open brackets. When

this is the case for input x, the length of the counter is log2(|x|). So even in the worst case scenario,

we only use logarithmic space. Thus MATCHED PARENTHESES is in L.

4.

We first note that REACHABILITY is NL-complete and thus in NL. STRONGLY CONNECTED is in NL because

we can just check each pair of vertices using our NL algorithm for REACHABILITY. We can reuse the

space for each pair of nodes, so the amount of space used is still logarithmic.

Why is STRONGLY CONNECTED complete? Our approach is to show that REACHABILITY <= STRONGLY CONNECTED,

which since REACHABILITY is NL-complete would imply our result.

TODO

5.

In a minimisation problem, m(x,y) >= OPT(x), since OPT(x) is the value of an optimal solution.

If |OPT(x) - m(x,y)|/OPT(x) < 1/2, that means:

(m(x,y) - OPT(x))/OPT(x) < 1/2

2(m(x,y) - OPT(x)) < OPT(x)

2m(x,y) - 2OPT(x) < OPT(x)

2m(x,y) < 3OPT(x)

m(x,y) < 1.5*OPT(x)

Thus m(x,y) is less than 50% larger than OPT(x), the optimum value.

In a maximisation problem, m(x,y) <= OPT(x).

If |OPT(x) - m(x,y)|/OPT(x) < 1/2, that means:

(OPT(x) - m(x,y))/OPT(x) < 1/2

2(OPT(x) - m(x,y)) < OPT(x)

2OPT(x) - 2m(x,y) < OPT(x)

OPT(x) < 2m(x,y)

m(x,y) > OPT(x) / 2

Thus m(x,y) is greater than 50% of OPT(x), the optimum value.

6.

If First-Fit is a 1-approximating algorithm for BIN-PACKING(O) then for

any instance x, First-Fit computes a feasible solution to BIN-PACKING(O)

with relative error less than 1 in a time which is polynomial in |x|.

Now "relative error less than 1" means m(x,y) < 2*OPT(x), i.e. First-Fit

uses fewer than twice the optimal number of bins.

Why is this the case? Consider the following: at any stage, there is no more

than one bin which is more than half-empty.

Proof (by induction)

Base Case:

Initially, we start with one bin, so obviously there isn't more than one which is more than half-empty.

Hypothesis:

After m objects have been placed in bins, no more than one bin is more than half-empty.

Step:

Suppose no bins are more than half-empty after placing m objects (Case 1). Then

however we place the (m+1)th object (whether in an existing bin or in a new bin),

no more than one can be half-empty afterwards.

Suppose exactly one bin is more than half-empty after placing m objects (Case 2).

Consider the (m+1)th object. Either it has size <= c/2, in which case it can go

in the bin which is more than half-empty (and thus either have no effect or reduce

the number of bins which are more than half-empty), or it has size > c/2, in which

case it can either go in the bin which is more than half-empty, if it fits, with

the same result as above, or go in a new bin which will be less than half-empty.

Either way, the number of bins which are more than half-empty will not go above one.

QED

We note the following:

The optimal number of bins used is lower-bounded by y = ceil((sum{i=1 to n} x[i])/c),

since (y-1)*c < sum{i=1 to n} x[i], namely the total amount we have to pack.

Suppose First-Fit used at least 2y bins, say 2y + j + 1 bins for some integer j >= -1.

Then since at most one of these bins is more than half-empty, those bins contain at least

(2y+j)*c/2 amount of stuff, i.e. y*c + j*c/2.

If j > 0 then y*c + j*c/2 >= y*c + c/2 > sum{i=1 to n} x[i]. In other words, we would have

packed more stuff than we have in those 2y + j bins, which obviously can't happen.

If j = 0 then note y*c >= sum{i=1 to n} x[i]. If it's strictly greater, then again we'd have

packed more stuff than we have, which isn't possible. If it's equal, then our remaining bin

(the one which could be more than half-empty) would be empty, making it redundant (so we'd

only need 2y + j bins in total, a contradiction).

If j = -1 then we've packed at least y*c - c/2 amount of stuff. So there's x <= c/2 stuff left

to pack. Since we've packed no more than y*c - x amount of stuff into (2y-1) bins, there's some

bin which has no more than (y*c - x)/(2y-1) amount of stuff in it by the pigeonhole principle.

We want to show that (y*c - x)/(2y-1) + x <= c, i.e. that we could fit x into the bin with the

least amount of stuff in it:

yc - x <= (c - x)(2y - 1)

yc - x <= 2yc - 2yx - c + x

2yx - 2x + c - yc <= 0

Well x <= c/2, so:

2yx - 2x + c - yc

<= 2y(c/2) - 2(c/2) + c - yc

<= yc - c + c - yc

= 0

So it's true.

Well if we could fit x into one of our existing bins then we don't need another bin, which is

another contradiction.

So we've contradicted ourselves in every case, whence First-Fit must use fewer than 2y bins.

So First-Fit is a 1-approximating algorithm for BIN-PACKING(O).
