Stuart Golodetz

Marker: Ross Duncan

Computational Complexity

Exercises 5
1.

We recall Blum's axioms:

i) phi[M](x) is defined exactly when M(x) is defined

ii) for given M, x, r, "does phi[M](x) = r?" is decidable

Let's start with (ii):

Yes. We can simulate all branches of the nondeterministic computation M(x) for r steps

and check whether it halts.

What about (i)?

Yes, but we have to be careful. Time complexity is only defined when all branches of the computation

M(x) halt, so we have to assert that M(x) is only defined in the same circumstances to satisfy this

axiom.

2.

Suppose L1 and L2 are in NP. Then by Definition 6.2 in the notes, they have polynomial-time verifiers,

call them V1 and V2 respectively.

Union:

We need to show that given an input w and a certificate c for w, we can check whether w is in L1 U L2

in polynomial-time.

To do this, we construct a machine V which does the following on input "w;c":

Run V1 on input "w;c". Since V1 is a verifier for L1, it will halt in an accepting state if w is in L1

and will otherwise halt in a rejecting state. Thus if it accepts, V should accept, for if w is in L1

then it is certainly in L1 U L2.

If it rejects, run V2 on input "w;c". Since V2 is a verifier for L2, it will halt in an accepting state if

w is in L2 and will otherwise halt in a rejecting state. Thus if it accepts, V should accept, for if w is

in L2 then it is certainly in L1 U L2. If it rejects, V should reject, given that w isn't in L1 either.

So V is certainly a verifier for L1 U L2, but it remains to demonstrate that it's polynomial-time. But this

is trivial, since all we're doing is running at most two polynomial-time verifiers one after the other.

If V is a polynomial-time verifier for L1 U L2, then L1 U L2 is in NP, as required.

Intersection:

We need to show that given an input w and a certificate c for w, we can check whether w is in L1 ^ L2

in polynomial-time.

To do this, we construct a machine V which does the following on input "w;c":

Run V1 on input "w;c". Since V1 is a verifier for L1, it will halt in an accepting state if w is in L1

and will otherwise halt in a rejecting state. Thus if it rejects, V should reject, for if w is not in

L1 then it is certainly not in L1 ^ L2.

If it accepts, run V2 on input "w;c". Since V2 is a verifier for L2, it will halt in an accepting state

if w is in L2 and will otherwise halt in a rejecting state. Thus if it accepts, V should accept, for if

w is in both L1 and L2 then it's certainly in L1 ^ L2. If it rejects, V should reject, since if w isn't

in L2 then it isn't in L1 ^ L2.

All this takes polynomial-time, as before, so V is a polynomial-time verifier for L1 ^ L2, which is hence

in NP.

Star:

Suppose L is in NP. Then it has a polynomial-time verifier, call it V.

We need to show that given an input w and a certificate c for w, we can check whether w is in L* in

polynomial-time.

TODO

Polynomial-time reducibility:

Suppose L is in NP and L' <= L. By Definition 5.2 in the notes, there exists a polynomial-time computable

function f s.t. x in L' <=> f(x) in L. Furthermore, by Definition 6.6, there exists k >= 0 s.t. L is in

NTIME[n^k]. In other words, there is a nondeterministic Turing Machine NT s.t. x is in L iff there is an

accepting computation path in NT(x). The length of a shortest accepting or rejecting path is in O(|x|^k).

We construct a nondeterministic Turing Machine NT' that decides L' in nondeterministic polynomial-time

as follows:

On input x, compute f(x) (in polynomial-time) and simulate NT(f(x)). Accept iff it does.

Now NT(f(x)) takes nondeterministic polynomial-time, thus so does NT'(x).

Furthermore, NT'(x) accepts iff f(x) is in L, i.e. iff x is in L', so NT' decides L'.

3.

(a)

If P = NP then since P is closed under complementation, NP is trivially also closed under complementation.

(The proof that P is closed under complementation was part of the previous sheet.)

(b)

Take any language L in NP which is neither the empty language nor sigma*.

We want to show that any language M in NP can be reduced to L. Well if L and M are in NP, then

since (by assumption) P = NP, they are both in P.

To show that M <= L, we need to find a polynomial-time computable function f s.t.

x is in M <=> f(x) is in L

Since L isn't the empty language, there is some a which is in L.

Since L isn't sigma*, there is some a' which isn't in L.

Define f(x) = {
a, if x is in M

a', if x is not in M
}

Then if x is in M, f(x) = a is in L, and if x is not in M, f(x) = a' is not in L.

Furthermore, f is polynomial-time, since we can decide if x is or is not in M in

polynomial-time as we know that M is in P. It's also obviously computable.

So M <= L. Since any language in NP can thus be reduced to L, L must be NP-complete.

4.

Well it's clearly in NP, since the accepting computation would be a certificate.

Why is it complete?

TODO

5.

It's clearly in NP, since if we were given two satisfying assignments for a CNF formula f then

we could check that they work in polynomial-time without any difficulties.

To show that it's NP-complete, we want to show that:

SAT <= DOUBLE SATISFIABILITY

Given a formula F, take some fresh variable x which isn't mentioned in F and define:

F' = F ^ (x v ¬x)

Then there is a satisfying assignment for F iff there are at least two satisfying

assignments for F'.

Proof:

=>) If there's a satisfying assignment for F, then that can be extended with either x = true or

x = false to satisfy F', so there are at least two satisfying assignments for the latter.

<=) If there are at least two satisfying assignments for F', then consider one of them. Remove

the assignment to x of either true or false. The resulting assignment satisfies F.

QED

So we have a polynomial-time computable function f s.t.

f(F) = F', and F is in SAT <=> f(F) = F' is in DOUBLE SATISFIABILITY

Whence SAT <= DOUBLE SATISFIABILITY and the latter is NP-complete.

Why is it polynomial-time computable? Well all we're doing is putting an extra clause on the

end. Even if we searched F when finding an unused variable name, it wouldn't take more than

polynomial-time to do, and in practice it's not especially hard to just come up with some

name which no-one's ever used before, like blah230984, for instance.

6.

TODO

7.

(a)

Yes. There aren't any numbers in the input, so it's vacuously true that 3-SAT remains NP-complete when

"all numbers in the input are bounded by some polynomial in the length of the input".

(b)

TODO

(c)

Yes. It's NP-complete for 3 colours and 3 is definitely bounded by some polynomial in the length of

the input, since it's a constant.

(d)

No. There's a pseudo-polynomial dynamic programming algorithm for SUBSET SUM.

(e)

TODO

(f)

No. There's a pseudo-polynomial algorithm to check whether a number's prime, namely

checking all possible factors (up to, say, the square root of the number). It's only

pseudo-polynomial because the length of the input for a number n is O(log n), so the

amount of work needed (something like O(sqrt(n))) is not bounded by a polynomial

function of the input length.

8.

We recall the definition of DIOPHANTINE EQUATIONS:

Instance: A multivariate polynomial equation such as

x^2.y + 3yz - y^2 - 17 = 0

Question: Does this equation have an integer-valued solution?

To show this is NP-hard, we just have to show that we can reduce SAT to it, i.e. that SAT <= DIOPHANTINE EQUATIONS.

So what do we have to do? Given a CNF formula F, we have to show that we can construct a diophantine equation E

which has roots iff F is satisfiable. Let's consider an example:

F = (a v ¬b) ^ (¬a v c)

We map this to the diophantine equation E:

(a(1-b))^2 + ((1-a)c)^2 = 0

In general, our mapping works as follows:

Map a variable x to x and ¬x to (1-x).

Map a v b to a * b.

Map a ^ b to a + b.

Square all the clauses being added, as in the above.

Set the whole thing equal to 0.

This has integral roots iff F is satisfiable. If x = 0 in a set of roots for E, then x = true in the corresponding assignment which

satisfies F. If x = 1 in a set of roots for E, then x = false in the corresponding assignment which satisfies F. For instance:

F = x

E is x = 0, which has the root x = 0

The corresponding assignment which satisfies F is x = true.

How does the mapping work?

Well, we want it to be the case that the whole thing can only equal 0 if each of the clauses does. This gives us the equivalent of

the whole formula only being true if each of its clauses is. This is why we square each of the clauses. By doing so, we ensure that

we're only summing positive numbers. If the sum of a load of positive numbers is 0, each of them must be 0.

We handle disjunctions by multiplying, since if any of the terms is 0 then we want the whole clause to be.

(I haven't explained this terribly well, but it does happen to be 3.30am right now!)

9.

(a)

VALIDITY is coNP-complete. It is defined as follows:

Instance: CNF formula F

Question: Is F true for all possible truth assignments?

It's coNP-complete by the following reasoning:

Suppose L is in coNP. We want to demonstrate that L <= VALIDITY. Let L' denote the complement

of L, then L' is in NP.

L' can be reduced to SAT, since SAT is NP-complete. That is, there is some f s.t. x is in L' iff f(x) is in SAT.

So x is not in L', i.e. x is in L, iff f(x) is not in SAT, i.e. f(x) is in coSAT = VALIDITY.

In other words, we can reduce L to VALIDITY using f, as required. So VALIDITY is coNP-complete.

(b)

Suppose L is a coNP-complete problem and L is in NP. We want to show:

1) coNP is a subset of NP

Take any language M in coNP. Since L is coNP-complete, M <= L. But L is in NP, so M must be too.

2) NP is a subset of coNP

Take any language M in NP. The complement of M, call it M', is in coNP. Since L is coNP-complete,

we have that M' <= L. Whence M <= L', where L' is the complement of L. But since L is in NP, L'

is in coNP. But this implies that M must be also.

QED
