Stuart Golodetz

Marker: Ross Duncan

Computational Complexity

Exercises 4
1.

Union:

Suppose L1 and L2 are in P, that is there are some TMs T1 and T2 which can decide L1 and L2 respectively in polynomial time.

Then we can construct a TM T which decides L1 U L2 in polynomial time as follows:

On input x, T simulates T1(x). Since T1 decides L1, it will halt (in polynomial time) and either accept or reject.

If T1 accepts, T should accept, since x is in L1 and hence in L1 U L2.

If T1 rejects, T simulates T2(x). Since T2 decides L2, it will halt (in polynomial time) and either accept or reject.

If T2 accepts, T should accept, since x is in L2 and hence in L1 U L2.

If T2 rejects, T should reject, since x is in neither L1 nor L2 and is thus not in L1 U L2.

So on any input x, T accepts x if it's in L1 U L2 and rejects it if it isn't, thus it decides L1 U L2. Furthermore, it does

so in polynomial time, since the sum of two polynomials (i.e. doing the two simulations sequentially) is still a polynomial.

Then L1 U L2 is in P, since there exists a TM (namely T) which decides it in polynomial time.

Intersection:

Suppose L1 and L2 are in P, that is there are some TMs T1 and T2 which can decide L1 and L2 respectively in polynomial time.

Then we can construct a TM T which decides L1 ^ L2 in polynomial time as follows:

On input x, simulate T1(x). T1 decides L1 and thus halts in polynomial time and accepts or rejects.

If T1 rejects, T should reject, since x is not in L1 and hence not in L1 ^ L2.

If T1 accepts, simulate T2(x). T2 decides L2 and thus halts in polynomial time and accepts or rejects.

If T2 rejects, T should reject, since x is not in L2 and hence not in L1 ^ L2.

If T2 accepts, T should accept, since x is in both L1 and L2 and hence in L1 ^ L2.

So on any input x, T accepts x if it's in L1 ^ L2 and rejects it if it doesn't, thus it decides L1 ^ L2. Furthermore, it does

so in polynomial time, since again we're at most running two polynomial time deciders one after another. Then L1 ^ L2 is in P,

since there exists a TM (namely T) which decides it in polynomial time.

Complementation:

Suppose L is in P, that is there is some TM T which can decide L in polynomial time.

Then we can construct a TM T' which decides L' (the complement of L) in polynomial time as follows:

On input x, simulate T(x). T decides L and thus halts in polynomial time and accepts or rejects.

If T accepts, reject. If T rejects, accept.

So on any input x, T' accepts x if T doesn't accept it and vice-versa, i.e. it accepts x if it's not in L

and rejects it if it is, i.e. it accepts x if it's in L' and rejects it if it isn't. So T' decides L' in

polynomial time and L' is hence in P.

Star:

Suppose L is in P, then we want to show that L* is in P.

My initial inclination was to use a similar method to that used when proving that "L is decidable => L* is decidable",

namely on input w, do the following:

for k = 1 to |w|

 for all possible k-partitions of w into w1, w2, ..., wk

 If all the wi's are in L, accept

If we get to the end and haven't accepted, reject

This would be great, except for the fact that it's not polynomial time! Clearly we can check whether each wi is in L in

polynomial time, but the partitioning isn't polynomial time so we're stuffed.

However, we note that Problem 7.13 in Sipser reads:

"Show that P is closed under the star operation. (Hint: On input y = y1...yn for yi in sigma, build a table indicating

for each i <= j whether the substring yi...yj is in A* for any A in P."

This sounds like a dynamic programming solution is called for. We create our table T with size n x n for simplicity, though

actually only n(n+1)/2 entries will be used.

We proceed as follows:

Integer[][] T = new Integer[n][n];
// initially all the entries are null

...

for(int i=1; i<=n; ++i)

{

for(int j=i; j<=n; ++j)

{

fill_in(i, j);

}

}

System.out.println(x + " is " + (T[1][n] == 1 ? "not " : "") + "in L*");

...

void fill_in(int i, int j)

{

if(T[i][j] != null) return;
// Don't fill things in twice.

if(x[i]...x[j] is in L)

// Since in L => in L*. Note that deciding if it's in L takes polynomial time.

{

T[i][j] = 1;

return;

}

// If there's some k such that i <= k < j and both T[i][k] and T[k+1][j] will be 1 when filled in (if not already),

// then T[i][j] = 1, since x[i]...x[k] in L* ^ x[k+1]...x[j] in L* => x[i]...x[j] in L* since the concatenation of

// two things in L* is always in L*.

for(int k=i; k<j; ++k)

{

// Evaluate T[i][k] and T[k+1][j] on demand, if they haven't already been evaluated.

fill_in(i, k);

fill_in(k+1, j);

if(T[i][k] == 1 && T[k+1][j] == 1)

{

T[i][j] = 1;

return;

}

}

// If we get here, x[i]...x[j] isn't in L*.

T[i][j] = 0;

}

This is definitely polynomial time, so L* is in P.

2.

Yes. coP = {L' | L in P}, i.e. the set of complements of every language in P.

Proof that coP = P:

coP is a subset of P

Take any language L' in coP, then by the definition of coP there is a corresponding language L in P whose

complement is L'. By the proof that P is closed under complementation (above), if L is in P then L' is in P.

So any language in coP is also in P.

P is a subset of coP

Take any language L' in P. By the proof that P is closed under complementation (above), if L' is in P then

(L')' = L is in P. But if L is in P then L' is in coP by definition, so any language in P is also in coP.

3.

Something like:

enum Colour

{

BLACK, RED;

Colour other()

{

switch(this)

{

case BLACK: return RED;

case RED: return BLACK;

}

throw new Error();
// never get here, but the compiler gets unhappy without it

}

}

Set<Node> seen = new HashSet<Node>();

...

void colour(Graph g, Node n, Colour c) throws NotColourableException

{

// Precondition: !seen.contains(n)

n.set_colour(c);

seen.add(n);

for(Node a: g.adjacent_nodes(n))

{

if(!seen.contains(a)) colour(g, a, c.other());

else if(a.get_colour() != c.other()) throw new NotColourableException();

}

}

...

boolean colourable(Graph g)

{

try { colour(g, g.arbitrary_node(), firstColour); return true; }

catch(NotColourableException e) { return false; }

}

Explanation: To see if a graph's colourable, we attempt to colour it (we assume that all the nodes are initially uncoloured).

Every time we get to an unseen node, we colour it with the current colour, add it to the seen list and look at all its

adjacent nodes. If an adjacent node hasn't been coloured, we colour it with the opposite colour and recurse. If it's already

been coloured, we ignore it if it's already the opposite colour, but throw an exception if it's the same colour because then

the graph isn't colourable. The main colourable method traps this exception and returns false if necessary.

Why is it polynomial time? Well we're only visiting each node once and we're only doing a polynomial amount of work each time.

4.

(i)

For each vertex v in the graph we're trying to 3-colour, add clauses to our formula as follows:

(v1 ^ ¬v2 ^ ¬v3) v (¬v1 ^ v2 ^ ¬v3) v (¬v1 ^ ¬v2 ^ v3) (meaning either vertex v is colour 1, or it's colour 2, or it's colour 3)

To get this into 3-CNF we could draw up a truth-table:

v1 v2 v3
Formula

0 0 0

0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

¬Formula = (¬v1 ^ ¬v2 ^ ¬v3) v (¬v1 ^ v2 ^ v3) v (v1 ^ ¬v2 ^ v3) v (v1 ^ v2 ^ ¬v3) v (v1 ^ v2 ^ v3)

Formula = (v1 v v2 v v3) ^ (v1 v ¬v2 v ¬v3) ^ (¬v1 v v2 v ¬v3) ^ (¬v1 v ¬v2 v v3) ^ (¬v1 v ¬v2 v ¬v3)

This isn't especially tidy, but it is in 3-CNF.

For every vertex w such that (v,w) is an edge in the graph, add clauses:

(¬v1 v ¬w1) ^ (¬v2 v ¬w2) ^ (¬v3 v ¬w3) (meaning no two vertices which share an edge have the same colour)

We can rewrite this in 3-CNF, if necessary.

So we end up with a formula in 3-CNF (if we conjunct all the above clauses together) which we constructed in polynomial time

and which we can solve with any machine which can solve 3-SAT. So we've reduced 3-COLOURABILITY to 3-SAT.

(ii)

It's unlikely that there's a polynomial-time reduction from 3-COLOURABILITY to 2-SAT. If there was, 3-COLOURABILITY would be in P.

Since 3-COLOURABILITY is NP-complete, if that was the case then P would equal NP, which is generally believed not to be the case.

(iii)

Yes, there's a polynomial-time reduction from 4-COLOURABILITY to 3-SAT. Write clauses for each node v like:

(v1 ^ ¬v2 ^ ¬v3 ^ ¬v4) v (¬v1 ^ v2 ^ ¬v3 ^ ¬v4) v ... (i.e. every node has one of the four colours)

And write clauses for the edges again like above, only this time with (¬v4 v ¬w4) added on the end.

By Theorem 36.10 in CLR, we can transform formulae like this into 3-CNF, so we can use a machine which solves 3-SAT

to find a solution.

5.

Note: When I write (n k), I mean nCk here, i.e. the number of ways of choosing k things from n.

Algorithm: For each of the (n k) choices of k nodes from the graph, check whether they're all connected.

How costly is this?

Well, given k nodes, checking whether they're connected or not is an O(k^2) operation (we check if node 1's connected to nodes 2 through k,

then we check if node 2's connected to nodes 3 through k, etc.)

So we need O((n k) * k^2) operations total = O[(k^2 * n!)/(k! * (n-k)!)]. Note that (n k) is biggest when k = floor(n/2).

So our worst case is (imprecisely) something like O[(k^2 * n!)/((n/2)!)^2].

Now this is something like:

k^2*(n*(n-1)*(n-2)*...*1)/(n/2 * (n/2 - 1) * (n/2 - 2) * ... * 1)^2

= k^2*(n*(n-1)*...*(n/2 + 1))/(n/2 * (n/2 - 1) * (n/2 - 2) * ... * 1)

Well this is:

k^2 * (n / (n/2)) * ((n-1) / (n/2 - 1)) * ... * ((n/2 + 1) / 1)

= n^2/4 * (n / (n/2)) * ((n-1) / (n/2 - 1)) * ... * ((n/2 + 1) / 1)

= n^2/2 * ((n-1) / (n/2 - 1)) * ... * ((n/2 + 1) / 1)

< n^(k+1) since each of the divisions is less than n and there are k-1 of them

Now I've done this very imprecisely, so things like the fact that I've ignored the flooring of n/2 probably account for

why I've got O(n^(k+1)) instead of O(n^k), but the principle's there at least.

The algorithm doesn't show that CLIQUE is in P. It's polynomial in the number of nodes, but not in the length of the input.

6.

(i)

We prove that any Boolean formula f involving ¬, ^ and v can be transformed to an equivalent formula g in CNF by structural induction.

Base Case

f = an atomic formula, e.g. A. Then g = f is in CNF and equivalent to f.

Inductive Hypothesis

Define the size of a formula to be the number of tokens it contains, where a token is either an atomic formula, or one of

¬, ^ or v. So for instance, ¬(A v B) ^ C has size 6. Define formula f to be "smaller" than formula g iff size(f) < size(g).

Hypothesise that all formulae smaller than one under consideration can be transformed into CNF.

Inductive Step

Every non-atomic formula under consideration is of one of the following forms:

* ¬f', for some formula f'

* f1 ^ f2, for some formulae f1 and f2

* f1 v f2, for some formulae f1 and f2

By hypothesis, the f' in ¬f' can be transformed into CNF, and so can the f1s and f2s in the other two cases.

Suppose CNF(x) is a function which transforms a formula x into CNF. We need to show that it's total over the domain of

formulae under consideration. We showed in the base case that it's well-defined for atomic formulae, what about for

non-atomic formulae? We consider the easy case first:

CNF(f1 ^ f2) = CNF(f1) ^ CNF(f2)

This is well-defined, since f1 and f2 are both smaller than f1 ^ f2 and thus CNF(f1) and CNF(f2) are well-defined by

hypothesis. Furthermore, it's in CNF, since the conjunct of two formulae in CNF is clearly another in CNF.

What about CNF(¬f')? Let's consider ¬CNF(f'), which is of the following form (for some n):

¬(c1 ^ ... ^ cn)

= ¬c1 v ... v ¬cn

There are two cases:

* n > 1

If n > 1 then each ¬ci is smaller than ¬f' and can thus be transformed into CNF by hypothesis. So we end up with:

d1 v ... v dn

= d1 v (d2 v ... v dn)

where di = CNF(¬ci)

This is a formula of the form f1 v f2, which we will show in a minute can be transformed into CNF.

Example

{

¬(A v (B ^ C))

Then CNF(A ^ (B v C)) = (A v B) ^ (A v C), so ¬CNF(A ^ (B v C)) = ¬((A v B) ^ (A v C)) = ¬(A v B) v ¬(A v C) = (¬A ^ ¬B) v (¬A ^ ¬C).

This is a disjunct, which we can transform into CNF via:

(¬A v ¬A) ^ (¬A v ¬C) ^ (¬B v ¬A) ^ (¬B v ¬C)

= ¬A ^ (¬A v ¬C) ^ (¬B v ¬A) ^ (¬B v ¬C)

= ¬A ^ (¬B v ¬C) by simplifying

}

* n = 1

If n = 1 then c1 = CNF(f'). Furthermore c1 = (t1 v ... v tm) for some m. So ¬c1 = ¬t1 ^ ... ^ ¬tm = ¬CNF(f') = ¬f'.

Well ¬c1 is in CNF, as all the ti are of the form P or ¬P, so we can quite clearly transform ¬f' = f into CNF in this case.

So what about the f1 v f2 case? This is where it gets tricky. Consider CNF(f1) v CNF(f2):

(c11 ^ ... ^ c1p) v (c21 ^ ... ^ c2q) where CNF(f1) = (c11 ^ ... ^ c1p) and CNF(f2) = (c21 ^ ... ^ c2q)

This is equal to:

^(1<=i<=p,1<=j<=q) (c1i v c2j)

But c1i v c2j is still a disjunct, since it's the disjunct of two disjuncts, so this is in CNF.

QED

(ii)

Yes, the transformation can be done in polynomial time, but not in a naive way. Having read Theorem 36.10 in CLR, we proceed as follows:

* Parenthesise the formula if necessary to convert things like A v B v C to (A v B) v C, i.e. each connective has two children.

* Parse the formula into a binary tree, with literals as leaves and connectives as internal nodes.

* Introduce variables representing the output of each internal node.

* Rewrite the original formula as a conjunct of the root variable and clauses describing the operation of each node.

* Note that each clause contains at most 3 literals.

* We now need to convert each clause in the conjunct into CNF.

* To do this, we construct a truth table for each clause enumerating all possible assignments of true and false to the literals and

 the values they produce for the clause itself.

* We construct the disjunct of all assignments which produce false. For a clause phi[i], this is equivalent to constructing ¬phi[i].

 We put ¬ in front of this to get back to phi[i] and use DeMorgan's laws to give us a formula in CNF.

* The whole thing is now in CNF and it only took us polynomial time to do it.

Note: This is a very brief summary of something fairly intricate. I felt that typing out the whole theorem from the book wasn't entirely

productive!
