Stuart Golodetz

Marker: Ross Duncan

Computational Complexity

Exercises 3
1.

(a)

If:

Suppose coC1 is a subset of coC2. Given any language L in C1, we have to show that this means it's in C2.

Well, L is in C1 and its complement L' is therefore in coC1. Since coC1 is a subset of coC2, L' is also

in coC2. C2 is the complement of coC2 and thus contains the complement of L', i.e. L.

Only If:

Suppose C1 is a subset of C2. Given any language L' in coC1, we have to show that this means it's in coC2.

Well, L' is in coC1 and its complement L is therefore in C1. Since C1 is a subset of C2, L is also in C2.

coC2 is the complement of C2 and thus contains the complement of L, i.e. L'.

Note:

All of this relies on the fact that (L')' = {w | w not in L'} = {w | w not in {w | not in L}} = L.

It's probably also worth noting the fact that cocoC = C (apart from sounding quite tasty...in the unlikely

event that you don't get that(!), try reading it aloud). That's because:

cocoC = {(L')' | L' in coC} = {L | L' in {L' | L in C}} = C

(b)

TIME[f] = {L | time complexity of L is in O(f)}

coTIME[f]

= {L' | time complexity of L is in O(f)}

= {(L')' | time complexity of L' is in O(f)}

[rename L to L']

= {L | time complexity of L' is in O(f)}

[simplify (L')' to L]

i) TIME[f] is a subset of coTIME[f]

Proof:

Suppose L is in TIME[f]. Then the time complexity of L is in O(f), i.e. L can be decided in O(f) time.

That is, we can decide for any given input w whether w is, or is not, in L in O(f) time. But if we can

decide that w is not in L in O(f) time then we can decide that w is in L' in O(f) time. Furthermore, if

we can decide that w is in L in O(f) time then we can decide that w is not in L' in O(f) time. So we can

decide L' in O(f) time, i.e. the time complexity of L' is in O(f), so L is in coTIME[f].

ii) coTIME[f] is a subset of TIME[f]

Proof:

Suppose L is in coTIME[f]. Then the time complexity of L' is in O(f), i.e. L' can be decided in O(f) time.

That is, we can decide for any given input w whether w is, or is not, in L' in O(f) time. But if we can

decide that w is not in L' in O(f) time then we can decide that w is in L in O(f) time. Furthermore, if

we can decide that w is in L' in O(f) time then we can decide that w is not in L in O(f) time. So we can

decide L in O(f) time, i.e. the time complexity of L is in O(f), so L is in TIME[f].

2.

(a)

True. O(log n^2) = O(2 log n) = O(log n).

(b)

False. O(log^2 n) = log n . O(log n) != O(log n).

(c)

True.

2^n is in o(3^n) <=> (2^n)/(3^n) -> 0 as n -> infinity

Well, (2^n)/(3^n) = (2/3)^n. This clearly tends to 0 as n tends to infinity, though I'm not

sure I have the mathematical knowledge to show this rigorously (an analysis course might have

been handy). Were I to have a go at it, I'd suggest something like:

* (2/3)^n is clearly always positive, so we don't have to worry about it ever going negative

* For any epsilon > 0, however small, there is some n(epsilon) s.t. (2/3)^n(epsilon) < epsilon.

Consider that:

n(epsilon) log(2/3) < log(epsilon)

n(epsilon) > log(epsilon) / log(2/3)

This can always be arranged. Just set, for example, n(epsilon) = floor(1 + (log(epsilon) / log(2/3)))

(d)

log n is in o(n / log n)

<=> log n / (n / log n) -> 0 as n -> infinity

<=> (log^2 n) / n -> 0 as n -> infinity

<=> log^2 n is in o(n)

Well log n is in o(n^0.5), so log^2 n is in o(n), so this one's true.

(e)

It's true, though I confess I had to do a bit of "reading around the topic" on this one.

H(n) = sum{i=1,n} 1/i is the n'th harmonic number

According to CLR p.44, H(n) = ln n + O(1), whence log n = O(H(n)).

3.

(a)

Defined exactly when M(x) defined? Yes.

For given M, x, r, "does phi[M](x) = r?" is decidable?

Yes. Run M(x) for at most log2(r) steps.

If it halts after exactly log2(r) steps, phi[M](x) = r, since 2^log2(r) = r.

Otherwise (i.e. if it halts early or hasn't halted after log2(r) steps) phi[M](x) != r.

So it's valid.

(b)

Note: This is space complexity.

Defined exactly when M(x) defined? Yes.

For given M, x, r, "does phi[M](x) = r?" is decidable?

Yes. We know that if phi[M](x) = r, then M(x) must have halted in <= |sigma|^r * |states| * r steps.

Why is this? Well, we know we're only using r tape cells. There are only |sigma|^r different contents

of those tape cells. Furthermore, for each given tape contents, there are only |states| different states

we could be in with those contents and only r different tape head positions.

So after |sigma|^r * |states| * r steps we must either have halted or be in a configuration we've seen

already (in which case we'll never halt).

So to decide if phi[M](x) = r, we only have to simulate M(x) for |sigma|^r * |states| * r steps, thus it's

decidable.

(c)

Defined exactly when M(x) defined? Yes.

For given M, x, r, "does phi[M](x) = r?" is decidable?

Yes. We know that if phi[M](x) = r, then either r is the number of steps taken by M(x) or it's 10 times

the number of tape cells visited during the computation of M(x). Well it's decidable whether it's the number

of steps taken by M(x) - just run M(x) for r steps and see when it halts, if at all - and it's decidable

(as in (b)) whether the number of tape cells visited (and hence a multiple of it) is r.

To decide if the maximum of the two is equal to r, we first run M(x) for r steps.

* If it halts after more than r steps, the maximum of the two isn't equal to r.

* If it halts after exactly r steps:

Run M(x) for |sigma|^r * |states| * r / 10 steps.

If it halts before we're done, the maximum of the two was equal to r.

If it hasn't halted after that many steps, the maximum of the two wasn't equal to r.

* If it halts before r steps:

Run M(x) for |sigma|^r * |states| * r / 10 steps.

If it halts after exactly |sigma|^r * |states| * r / 10 steps, the maximum of the two was equal to r.

Otherwise the maximum of the two wasn't equal to r.

(d)

Note: This is ink complexity.

Defined exactly when M(x) defined? Yes.

For given M, x, r, "does phi[M](x) = r?" is decidable?

The answer's yes, but I'm not sure I fully understand why! Would probably help to see why

again in class, I thought I understood it when I saw it in the lecture but apparently not.

(e)

This one isn't ok. For any given TM T with alphabet sigma, we can construct a TM T' with

alphabet sigma' = sigma U {x* | x in sigma} s.t. whenever T replaces x with x, T' replaces

x with x* and x* with x, i.e. instead of writing x each time, we alternate between x and x*.

We note that T' never replaces a symbol with the same symbol.

Suppose phi[T'](x) = 0 was decidable. Then we would be able to decide whether T' halts,

for phi[T'](x) is defined iff T'(x) halts. Given that it would be fairly easy to decide

the halting problem, which can't be done. Thus phi[T'](x) isn't decidable and hence

phi[M](x) = r isn't.

4.

Note: This is quite similar to question 1 on the first sheet. More importantly, it's very similar to Theorem 7.8 in Sipser (P.232).

If T is a TM with Time(T) in O(f), then T halts on input x in O(f(|x|)) steps. Suppose T has k tapes. We construct a

single-tape TM T' with Time(T') in O(f^2), such that T' simulates T, as follows:

T' uses its single tape to represent the contents on all k of T's tapes. The tapes are stored consecutively

and separated by #, with the positions of the heads marked by adding special symbols to the relevant alphabets,

e.g. a* for an a with a head at that location.

On input x = x1...xn, T' writes x1*...xn#<blank>*#<blank>*#...# onto its tape, where there are k-1 virtual tapes containing <blank>*.

Then T' simulates each step of T as follows:

* Scan the tape to determine the symbols under the various virtual tape heads (determining the symbols

 in this case by transitioning to a state representing them). This can be done in time proportional

 to the length of the active portion of the tape of T', but how long is that exactly? Well, there are

 k virtual tapes, each of which has a length equal to the length of the active portion of the tape

 it's representing. Now the length of the active portion of each of T's k tapes can't be greater than

 O(f(|x|)), since even if we ran T till it halted, we couldn't get more than that number of symbols

 to the right. So the length of the active portion of the tape of T' is in k*O(f(|x|)), i.e. O(f(|x|)).

* Having determined where the various heads are, carry out the relevant transition. This involves walking

 back along the tape and changing some symbols, which takes O(f(|x|)) time, and possibly shifting part

 of the tape to the right if one of the virtual tapes runs out of room. At most k-1 shifts will be needed,

 each of which takes O(f(|x|)) time, so the shifting only takes O(f(|x|)) time and thus the whole transition

 takes O(f(|x|)) time.

So everything required to simulate a step of T can be done in O(f(|x|)) time. There are O(f(|x|)) steps of T

to simulate, so the whole thing is O(f(|x|)^2). So TIME(T') is in O(f^2).

5.

(a)

A general polynomial is a[m].n^m + ... + a[1].n + a[0].

We observe (trivially) that each term of this is in itself a polynomial. We also observe

that if f(n) and g(n) are time-constructible in O(f(n)) and O(g(n)) time respectively,

then f(n) + g(n) is time-constructible in O(f(n) + g(n)) time, since we can just compute

f(n) and g(n) in O(f(n) + g(n)) time and add them together.

So to show that a general polynomial is time-constructible, we just have to show that any

one of its terms is, since there's only O(m) work involved in adding the results of the

terms together and this is upper-bounded by the amount of work involved in computing the

individual terms.

RTP: For any k > 1, we can construct a machine M that stops on input 1^n in O(n^k) steps.

Proof:

TODO

(b)

TODO

6.

Note: This one required some serious researching, I found it much too hard to do on my own!

Suppose, for a contradiction, that there is some machine M which decides HALTING(f) in time

f(floor(n/2)). That is, given input T;x, M decides whether T(x) halts in f(|x|) steps, and

it itself halts in f(floor(|T;x|/2)) steps.

Construct a machine D which on input N (N being the encoding of a TM) simulates M(N;N). If

M(N;N) rejects, D(N) accepts. If M(N;N) accepts, D(N) does at least one unnecessary step

and then rejects.

How long does D(N) take to run? Well, it has to simulate M(N;N), which takes f(floor(|N;N|/2))

= f(floor((2|N|+1)/2)) = f(|N|) steps. If M(N;N) rejected, D(N) thus accepts in f(|N|) steps.

If M(N;N) accepted, D(N) rejects in f(|N|) + 1 steps.

Now consider D(D). This accepts in f(|D|) steps iff D(D) doesn't halt in f(|D|) steps, which is

a contradiction. Furthermore, it rejects in f(|D|) + 1 steps iff D(D) halts in f(|D|) steps, which

is another contradiction.

So our original assumption was false, i.e. there isn't a machine which decides HALTING(f).
