Stuart Golodetz

Marker: Ross Duncan

Computational Complexity

Exercises 2
1.

If L1 and L2 are decidable languages, then there exist Turing Machines M1 and M2 which decide them such that:

If x is in L1 then M1(x) halts in accepting state qA

If x is not in L1 then M1(x) halts in rejecting state qR

If x is in L2 then M2(x) halts in accepting state qA'

If x is not in L2 then M2(x) halts in accepting state qR'

(a)

We can clearly get another Turing Machine to simulate M1(x) and M2(x). First we simulate M1(x). If M1 would have

accepted x (i.e. it ended up in state qA), we accept. If M1 would have rejected x, we simulate M2(x) and accept

or reject based on what M2 would have done.

Our new Turing Machine accepts x if M1 or M2 would have accepted x and rejects x otherwise. Thus it decides

L(M1) U L(M2) = L1 U L2.

(b)

This time our new Turing Machine simulates M1(x) and rejects if M1 would have done. If M1 would have accepted,

it simulates M2(x) and accepts or rejects based on what M2 would have done.

The machine accepts x if M1 and M2 would both have accepted x and rejects x otherwise. Thus it decides

L(M1) ^ L(M2) = L1 ^ L2.

(c)

Our machine simulates M1(x). If M1 would have accepted, reject. If M1 would have rejected, accept. Our new

machine accepts x exactly when M1 would have rejected it, i.e. when it's not in L(M1) = L1. Or to put it another

way, it accepts x when it's in the complement of L1. It rejects x when it's in L1, i.e. when it's not in the

complement of L1. So our machine decides the complement of L1.

(d)

The algorithm for deciding L1;L2 is:

for n = 0 to |x| do

w = x[0..n)

v = x[n..|x|)

If M1(w) and M2(v) accept, then accept

end

If we get to the end and didn't find anything, reject

This accepts on input x iff there exists some n in [0..|x|] s.t. x = wv, |w| = n, |v| = |x| - n, w is in L1 and v is in L2,

which means it decides the language given.

(e)

The algorithm for deciding L1* is:

for k = 1 to |x|

 for all possible k-partitions of w (e.g. if k were 2 and w = blah then w1 = bla and w2 = h would be a 2-partition of w)

 If all the wi's are in L1, accept

If we get to the end and haven't accepted, reject

So for example:

w = aaabb, L = a* + b*

1-partitions

aaabbb -> not in L -> continue

2-partitions

a, aabbb -> in L, not in L -> continue

aa, abbb -> in L, not in L -> continue

aaa, bbb -> in L, in L -> accept

2.

Take any acceptable language L. Then there is some TM T which accepts it, i.e. which will halt in an accepting state on input x

if x is in L, and will either halt in a rejecting state or fail to terminate if x is not in L.

Suppose we had a TM H which could decide the halting problem. Then we could decide L as follows:

Run H on input T;x. If it rejects then T(x) doesn't terminate, which means x isn't in L given what we said about T above, so we reject x.

If H accepts then T(x) terminates, so run T on input x and accept if it does or reject if it does.

The difficulty we had in deciding L was due to the fact that we didn't know if T would terminate or not. If it's possible to

tell that it won't terminate, we can eliminate the uncertainty about whether T might eventually terminate and accept, thus

allowing us to decide L.

3.

Outline of the proof:

Suppose we have a TM D which decides HALTING (EMPTY).

Then we could decide the HALTING problem, which we know is impossible.

So D can't exist.

How could we decide the HALTING problem using D?

Given a Turing Machine T and input x, we want to construct a TM H which decides whether T halts on x. We proceed as follows:

H constructs (the encoding of) a Turing Machine M which (when given empty input) first writes x onto its tape and then simulates

the effect of running T on x. H then runs D as a subroutine on <M>, the encoding of M.

If D accepts, M halts on empty input, so T(x) halts -> H should accept.

If D rejects, M wouldn't halt on empty input, so T(x) wouldn't halt -> H should reject.

So H accepts if T(x) halts and rejects if not, i.e. it decides the HALTING problem. Since this is impossible, D can't exist.

4.

It's decidable, weirdly enough! We don't know whether God exists or not, but we know it must be one of the two (essentially

this is the "law of the excluded middle" from logic - either p or ¬p is true). While we personally don't know whether it's

the case that L = {0} or L = {1}, it's definitely one or the other and can be decided.

5.

As per the proof in the lecture:

L2 is not the empty set, so there exists some a in L2

L2 is not sigma*, so there exists some a not in L2

Define:

f(x) = { a
if x is in L1

 a'
if x is not in L1 }

Then x in L1 <=> f(x) in L2, i.e. L1 <=m L2.

6.

Note

{

This seems slightly weird because D is a set of strings, not pairs. I'm assuming it means the same thing as

Exercise 4.17 in the book which reads:

"Let C be a language. Prove that C is Turing-recognizable iff a decidable language D exists such that

C = {x | there exists y (<x,y> is in D)}."

}

If:

Suppose there is such a decidable language D. Then there exists a machine M which decides D. We use it to construct

a machine T which recognises C as follows:

On input x, T does the following:

for n = 1, 2, ...

 for each string y of length n (over some alphabet)

 if M accepts <x,y>, then accept, otherwise continue

Only If:

Suppose C is Turing-recognizable. Then there exists a machine T which on input x accepts in a finite number

of steps if x is in C, and otherwise rejects or doesn't terminate.

Define D to be the language {<x,y> | T accepts x in y steps}. We can construct a machine M which decides D

as follows:

On input <x,y>, M runs T on x for y steps. If T accepts, M accepts, otherwise M rejects.

Thus D is decidable.

7.

(i) L is acceptable => (ii) L is r.e.

Suppose we have a TM M which accepts L. Then we design a TM T whose range is L as follows:

On input w, run M on w. If M accepts, write w onto T's output tape and halt.

Then T satisfies "for each w in L, there exists an input x such that T(x) halts with w on its output tape".

Consider that T(w) halts with w on its output tape for each w in L, since M halts and accepts if w is in L.

(ii) L is r.e. => (iii) L is the language enumerated by some TM

If L is r.e., then there is a TM M such that for each w in L, there exists an input x such that M(x) halts

with w on its output tape (by definition). So we want to construct a TM T to enumerate L:

TODO (I'm stuck on this one!)

(iii) L is the language enumerated by some TM => (i) L is acceptable

Suppose we have a TM M which enumerates L. Then we design a TM T which accepts L as follows:

On input x, run M on empty input. If M's tape ever ends with <blank> x <blank>, accept.

This accepts exactly when x is in L, i.e. T accepts L, which implies that L is acceptable.

8.

If:

Call the infinite language L (for the joint sakes of brevity and originality). Take a given string x whose

membership of L is to be decided. Now x has some finite position in a lexicographic ordering of sigma*, call

it n. So we know that if we enumerated sigma*, we'd get to x in n steps. Now L is a subset of sigma* and hence

it's obvious that a lexicographic ordering of L is going to be a subsequence of a lexicographic ordering of sigma*.

Just to make it clear what I mean, suppose sigma = {a,b}. Then a lexicographic ordering of sigma* would be:

<empty>, a, b, aa, ab, ba, bb, aaa, ...

Suppose L = a*, then a lexicographic ordering of L would be:

<empty>, a, aa, aaa, ...

This is clearly a subsequence of the ordering of sigma*.

Continuing with the proof:

Since we would have got to x in n steps when we enumerated sigma*, we must get to x in at most n steps when we

enumerate L. If x isn't actually in L, then we will find that out by seeing a string which would follow it in

the lexicographic ordering and (crucially) that must happen after no more than n steps. If x is in L, on the

other hand, we will see it after no more than n steps. So we can determine whether x is or is not in L in a

finite number of steps and hence L is decidable.

(It might remain to show why we'll always encounter a string which will follow x in the lexicographic ordering.

This turns out to be trivial since L is infinite - we will always keep encountering strings after x, and they're

guaranteed to follow it in the lexicographic ordering.)

Only if:

Suppose L is decidable. We are required to prove that this implies there is some TM which enumerates L in increasing

lexicographical order. Well, given alphabet sigma (i.e. L is a subset of sigma*), we could clearly enumerate sigma*

in increasing lexicographical order. Since we can decide L, all we have to do is enumerate sigma* ignoring any string

which isn't in L - this gives us our enumeration of L (by the Church-Turing thesis, if we can come up with a way of

enumerating L then we can certainly design a Turing Machine to do it).

So using the above example again, we would proceed as follows:

Is <empty> in L? Yes, write it on the tape

Is a in L? Yes, write it on the tape

Is b in L? No, ignore it

Is aa in L? Yes, write it on the tape

Is ab in L? No, ignore it

etc.

Each of these questions is being answered by a decider for L, of course.

Addendum:

I've said that "clearly a lexicographic ordering of L is a subsequence of such an ordering of sigma*" but I've

avoided proving it till now, so just for completeness:

Let us say that x is a subsequence of y iff every element of x appears in y in exactly the same order.

Well every element of a lexicographic ordering of L certainly appears in a lexicographic ordering of sigma*,

since L is a subset of sigma* and the lexicographic orderings contain all the elements of both. Furthermore,

lexicographic ordering doesn't depend on the language L but only on its alphabet, sigma, so if an element

appears before another in a lexicographic ordering of sigma* then it will also do so in a lexicographic

ordering of L.

Thus a lexicographic ordering of L is a subsequence of such an ordering of sigma*.

QED
