Stuart Golodetz

Marker: Ross Duncan

Computational Complexity

Exercises 1
1.

Q = {even,odd,accept,reject}

sigma = {0,1}

q0 = even

qa = accept

qr = reject

delta = {
<(even,0), (even,0,R)>,

<(even,1), (odd,1,R)>,

<(even,blank), (accept,blank,S)>,

<(odd,0), (odd,0,R>,

<(odd,1), (even,1,R)>,

<(odd,blank), (reject,blank,S)>

}

Explaining this in words, we start off in the even state (we haven't seen any 1s). We keep moving right until we reach a blank,

toggling between the even and odd states when we see a 1 and ignoring any 0s we encounter. When we reach a blank, we accept if

we've seen an even number of 1s and reject if not. (This does assume that there aren't any blanks in the input, of course.)

2.

For this question, we assume that the tapes have a special start-of-tape symbol |- at the beginning (as when we did the Models of Computation

course in first year). Initially the heads are pointing to the first symbol after |- on each tape. Note that |- isn't a symbol which can validly

be used anywhere else on the tape.

Our strategy is as follows:

(i) We copy the input to the second tape up until the first c.

(ii) We ignore the c's in the middle, if any. (If there weren't any, we need to check whether the word's a palindrome instead. To do

this, we just scan left on the first tape till we reach the beginning and then compare the two tapes as we would in step (iii).)

(iii) We scan forwards on the first tape and backwards on the second tape, comparing the two.

(iv) If we encounter a difference, we reject.

(v) If we get to the end and they're still equal, we accept.

Q = {copy,scanleft,ignore,compare,accept,reject}

sigma = {a,b,c}

q0 = copy

qa = accept

qr = reject

Notation (for brevity)

{

_ means any symbol in gamma, where gamma = sigma U {blank}

?v, where v is any symbol in gamma, can be taken to mean "bind ?v to whatever's on that tape"

_:S means any symbol in S, e.g. _:{a,b} means a or b (this is actually unused, but never mind)

?v:S, where v is any symbol in gamma, means "bind ?v to whatever's on that tape if it's a member of S" (otherwise, the rule doesn't apply, of course)

Note that gamma doesn't include the special start symbol |-.

Note also that once bound, ?v can't be rebound. So <(compare,(?v:{a,b},?v)), ... > in the below implies "if the symbols on the two tapes are equal".

Bindings are always considered to be done left-to-right, so the ?v:{a,b} comes first in the above. Were it done right-to-left, the above would be

ill-formed, since ?v:{a,b} is a binding expression rather than a use of ?v. Note that compare(?v,?v) would be fine right-to-left, though.

}

Example

{

<(copy,(?v:{a,b},_)), (copy,(?v,?v),(R,R))>

means "if we see an a or b on tape 1 whilst in the copy state, copy it to tape 2 and move both heads right, remaining in the copy state"

}

delta = {
<(copy,(?v:{a,b},_)), (copy,(?v,?v),(R,R))>,

<(copy,(c,blank)), (ignore,(c,blank),(R,L))>,

<(copy,(blank,blank)), (scanleft,(blank,blank),(L,L))>,

<(scanleft,(?v1,?v2)), (scanleft,(?v1,?v2),(L,S))>,

<(scanleft,(|-,?v2)), (compare,(|-,?v2),(R,S))>,

<(scanleft,(|-,|-)), (accept,(|-,|-),(S,S))>,

// this one's necessary to handle the empty input case

<(ignore,(c,?v2)), (ignore,(c,?v2),(R,S))>,

<(ignore,(?v1:{a,b,blank},?v2)), (compare,(?v1,?v2),(S,S))>,

<(compare,(?v:{a,b},?v)), (compare,(?v,?v),(R,L))>,

<(compare,(blank,|-)), (accept,(blank,|-),(S,S))>,

<(compare,(c,?v)), (reject,(c,?v),(S,S))>,

<(compare,(a,b)), (reject,(a,b),(S,S))>,

<(compare,(b,a)), (reject,(b,a),(S,S))>

}

It's not entirely plain whether I've covered all the cases, so let's try it out on some simple examples:

(i) No c's in input, non-palindrome.

copy

|- a a b

 ^

|-

 ^

###

copy

|- a a b

 ^

|- a

 ^

###

copy

|- a a b

 ^

|- a a

 ^

###

copy

|- a a b

 ^

|- a a b

 ^

###

scanleft

|- a a b

 ^

|- a a b

 ^

###

scanleft

|- a a b

 ^

|- a a b

 ^

###

scanleft

|- a a b

 ^

|- a a b

 ^

###

scanleft

|- a a b

^

|- a a b

 ^

###

compare

|- a a b

 ^

|- a a b

 ^

###

reject

So that one works at least.

(ii) No c's in input, palindrome.

copy

|- a b a

 ^

|-

 ^

###

copy

|- a b a

 ^

|- a

 ^

###

copy

|- a b a

 ^

|- a b

 ^

###

copy

|- a b a

 ^

|- a b a

 ^

###

scanleft

|- a b a

 ^

|- a b a

 ^

###

scanleft

|- a b a

 ^

|- a b a

 ^

###

scanleft

|- a b a

 ^

|- a b a

 ^

###

scanleft

|- a b a

^

|- a b a

 ^

###

compare

|- a b a

 ^

|- a b a

 ^

###

compare

|- a b a

 ^

|- a b a

 ^

###

compare

|- a b a

 ^

|- a b a

 ^

###

compare

|- a b a

 ^

|- a b a

^

###

accept
So that one works too. (Of course, it could be more efficient, we only really need to check as far as half-way, but that would complicate the machine a bit.)

(iii) More complicated one, c's in input, palindrome.

copy

|- a b c c b a

 ^

|-

 ^

###

copy

|- a b c c b a

 ^

|- a

 ^

###

copy

|- a b c c b a

 ^

|- a b

 ^

###

ignore

|- a b c c b a

 ^

|- a b

 ^

###

ignore

|- a b c c b a

 ^

|- a b

 ^

###

compare

|- a b c c b a

 ^

|- a b

 ^

###

compare

|- a b c c b a

 ^

|- a b

 ^

###

compare

|- a b c c b a

 ^

|- a b

^

###

accept

So it works.

3.

(a) Yes. Reason: Each number has a unique decimal representation.

(b) Yes. Reason: It's essentially the same as (a), the base being used (128 rather than 10) is irrelevant.

(c) Yes. Reason: Again, the representation of each number is well-specified and can only be one thing.

(d) No. Reason: If it had said prime factors *in non-decreasing order*, that would have been fine, but as it is,

the same number can have multiple representations. For example, 6 could be "10,11" or "11,10". Obviously you

could pick one or the other, but then you're implicitly selecting a different representation.

(e) Yes if we're assuming that J represents 0, no if there's no representation for 0. Reason: It's obviously ok

if there's a one-to-one correspondence between digits and letters. It's not ok if we can't represent anything with

a 0 in it. (Then we'd have the problem people used to have before someone came up with the idea of 0 - if I recall

correctly, it wasn't there initially.)

(f) Yes, it's well-defined, though I'm not sure it's especially "reasonable" in that it will be a complete pain to use!

Each number has a unique representation (e.g. 0 is the empty string, 1 is 0, 2 is 1, 3 is 00, 4 is 01, etc.).

4.

Code the number of tapes, k, as k zeros.

Number off all the states such that state qn consists of n+1 zeros:

q0 q1 q2 q3 etc.

0 00 000 0000

Code the alphabet as usual:

sigma = { s1, s2, s3, s4, ...

 0 00 000 0000 ...

If the position of a head is p, code it as p+1 zeros

Code a configuration as "<current state> 11 <contents of tape 1, with symbols separated by 1s> 11 ... 11 <contents of tape k, with symbols separated by 1s> 11 <positions of heads, separated by 1s>"

Code a (finite) computation as "<number of tapes> 11 <initial configuration> 11 <configuration 1> 11 <configuration 2> ...",

i.e. a list of 11-separated configurations, prefixed by the number of tapes

Example:

000 11 0 11 01000100 11 11 11 01010 11...

This is the start of an encoded computation and tells us that:

There are three tapes

We are in state q0

The first tape contains s1 s3 s2

The second and third tapes are empty

The heads are all at position 0

Notes:

The only point at which things could theoretically get mixed up is when there are individual 1s in the encoding which could get

seen as 11 if there's nothing in between them. The only point this happens is when we're specifying the contents of the tapes

and we avoid the problem by making sure that each symbol is represented by a non-empty string, i.e. s1 is 0 not the empty string.

5.

This is essentially taken from Sipser P.138-9. I've tried to paraphrase it to show that I understand

what's going on.
As noted in lectures, a nondeterministic computation is a tree of possible configurations resulting from

a start configuration. For a nondeterministic machine NT, a given input x is in L(NT), the language of NT,

if there is some configuration in the tree NT(x) whose state is the accepting state. To simulate NT with

a deterministic machine T, we have to try all possible configurations in NT(x) and accept if we find one

whose state is the accepting state. If we don't find one, T's simulation will continue looking forever.

We can't be naive about our traversal of the tree. In particular, depth-first search won't work because

the tree might be infinite and we'll never come back up and try the other branches. So we have to simulate

a breadth-first search of NT(x).

We use a three-tape deterministic machine T to simulate NT. The first tape contains the input, x, which

we never change. We take a look at the delta relation for NT and note that although there may be a choice

of transitions, there is a maximum number of choices (it's finitely nondeterministic). So each node in

NT(x) can have at most some number of children, call it b. The third tape contains an address in the tree

over the alphabet {1..b}. The address a1...an means take the a1'th child of the root, the a2'th child of

that node, the a3'th child of that node, etc. Of course, some addresses may not be valid, in that not all

nodes must have b children. The second tape is to contain a simulation of NT's tape on the branch of its

computation specified by the address on the third tape.

We proceed as follows:

1. Start with the input x on tape 1 and nothing on tapes 2 and 3.

2. Copy tape 1 to tape 2.

3. Simulate N on tape 2, based on what the address on tape 3 tells us to do (since tape 3 is initially empty,

this means doing nothing the first time). In general, if the symbol under the head of tape 3 is s, we choose

the s'th transition of the choices we're given, where we number them one way or another beforehand. We advance

the head of tape 3 each time. If the address on tape 3 isn't valid, or we run out of symbols, before we find

an accepting configuration, we go to step 4. We also go to step 4 if we encounter a rejecting configuration.

If we encounter an accepting configuration, we accept the input.

4. Replace the string on tape 3 with the string which is lexicographically next over the alphabet {1..b}, and

repeat the simulation starting with step 2.
6.

I’m not sure how to do this one! I think I can see that for each of the n steps taken by T, U will have to scan along the encoding of T to find an appropriate transition, which will be an operation which is linear in the length of T’s encoding. So if we call that length L, I can imagine that U might be expected to halt in no more than O(Ln) steps, i.e. kLn steps for some constant k that depends on T (i.e. if T’s encoding is longer, k will need to be bigger). What I can’t figure out is how (or indeed if!) L depends on n, which would turn the kLn into kn2. Just because there are only n transitions used by T when processing input x doesn’t mean that there aren’t many more unused transitions which would need to be encoded on U’s tape, so the length of the encoding doesn’t seem to depend on n. What am I missing?! (
