Stuart Golodetz

Compilers

Tutorial 3
6.1

let annotate_block(Block(decls,body)) size env =

let oldSize = !size in

let env' = check_decls size env decls in

List.iter (check_stmt size env') body;

size := oldSize;;

let rec check_stmt size env st =

match st with

 ...

| Block (decls,body) ->

annotate_block st size env

6.2

A certain imperative programming language contains a looping construct that consists of named loops with exit and next statements. Here is an

example program:

loop outer:

loop inner:

if x = 1 then exit outer end;

if even(x) then x := x/2; next inner end;

exit inner

end;

x := 3*x+1

end

Each loop "loop L: ... end" has a label L; its body may contain statements of the form next L or exit L, which may be nested inside inner loops.

A loop is executed by executing its body repeatedly, until a statement exit L is encountered. The statement next L has the effect of beginning

the next iteration of the loop labelled L immediately.

(a) Suggest an abstract syntax for this construct.

(b) Suggest what information should be held about each loop name in a compiler's symbol table.

(c) Briefly discuss the checks that the semantic analysis phase of a compiler should make for the loop construct, and the annotations it should

 add to the abstract syntax tree to support code generation. Give ML code for parts of a suitable analysis function.

(d) Show how the construct can be translated into a suitable intermediate code, and give ML code for the relevant parts of a translation function.

Answers:

(a)

type stmt =

 ...

 | Loop of ident * stmt list

 | Next of ident

 | Exit of ident

 | ...

(b)

The name of the labels at the start and end of the loop. Consider the loop translation:

loop L:

<loop body>

end

|

v

LABEL L1

<loop body>

JUMP L1

LABEL L2

If we see exit L, we do JUMP L2. If we see next L, we do JUMP L1.

It would be nicer if we were jumping to offsets rather than labels. Then we could do something like:

LABEL L1

<loop body>

LABEL L2

JUMP L1

If we see exit L, we do JUMP L2+2. If we see next L, we do JUMP L2. Then we only need to hold a single label as information about a loop name. Of course, in the generated code, it wouldn't look like JUMP L2 and JUMP L2+2, but like (for example) JUMP 100 and JUMP 102, respectively.

(c)

Checks

(i) It should check that exit and next statements refer to one of the enclosing loops.

(ii) It should check that no loop has the same name as one of its enclosing loops.

We modify check_stmt to have an additional parameter, namely the set of enclosing loop names.

let check_stmt_within_loop env loopNameSet =

function

 ...

| Loop (loopName,body) ->

if Set.mem loopName loopNameSet = true then

failwith "Nesting loops with identical name: $" [fStr loopName]

let newLoopNameSet = Set.add loopName loopNameSet in

List.iter (check_stmt_within_loop env newLoopNameSet) body

| Next loopName ->

if Set.mem loopName loopNameSet = false then

sem_error "next statement seen outside loop: $" [fStr loopName]

| Exit loopName ->

if Set.mem loopName loopNameSet = false then

sem_error "exit statement seen outside loop: $" [fStr loopName]

| ...

(d)

We modify gen_stmt and gen_stmts to have an additional parameter, namely a mapping from enclosing loop names to pairs of labels, namely those at the start and end of the respective loops.

let rec gen_stmt loopMap =

function

 ...

| Loop (loopName,body) ->

let lab1 = label() and lab2 = label() in

gen (LABEL lab1);

gen_stmts (Btree.add loopName (lab1,lab2) loopMap) body;

gen (JUMP lab1);

gen (LABEL lab2)

| Next loopName ->

let (lab1,lab2) = Btree.find loopName loopMap in

gen (JUMP lab1)

| Exit loopName ->

let (lab1,lab2) = Btree.find loopName loopMap in

gen (JUMP lab2)

| ...

7.2 [Difficult]

Consider a version of Lab 5's MiniBasic language that has static binding and reference parameters, but no recursion: the environment for a procedure is that of its definition, and does not contain the procedure itself. Suppose we also delete while loops from the language. Show that it is still possible to write a procedure fac(n) that sets the global variable f to the factorial of n.

Answer:

proc auxfac(n);

begin

fac(n)

end;

proc fac(n);

begin

if n = 0 then

f := 1

else

auxfac(n-1);

f := f*n

end

end;

This seems to work, since although we have mutual recursion, fac doesn't call itself, and neither does auxfac.

7.9

The following type definition describes the abstract syntax of a simple programming language:

type expr =

 Number of int

| Variable of ident

| Binop of op * expr * expr

| IfExpr of expr * expr * expr

| Call of ident * expr list

| Let of ident * expr * expr

| Func of ident * ident list * expr * expr;;

An expression in the language may have an integer or a function as its value. The test of a conditional expression is assumed to have an integer as its value, and it is considered as true if the value is non-zero. The abstract syntax Let (x,e1,e2) corresponds to the definition of a local variable, as in let x = e1 in e2. The abstract syntax Func (f,xs,e1,e2) corresponds to the definition of a local function, as in func f(x1,x2) = e1 in e2, where

xs = [x1; x2] is the list of formal parameters. The language has static binding and parameters are passed by value; functions may be recursive.

(a) Define appropriate types def to represent the definitions of names in the language, and value to represent values of expressions.

(b) Assuming an appropriate data type of environments (which you need not implement), give a source-level interpreter for the language.

(c) Consider the following program, which computes 4^4:

func twice(f) = (func ff(x) = f(f(x)) in ff) in

func square(x) = x * x in

let fourth = twice(square) in

fourth(4)

List the environments that are created during the execution of this program, showing the names that are defined in each, together with their

definitions.

(d) Briefly explain why this programming language does not have an implementation in which activation records are allocated from a stack.

Answers:

(a)

type def =

 VarDef of int

| FuncDef of ident list * expr * environment ref;;

type value =

 IntVal of int

| FuncVal of expr list;;

(b)

Disclaimer: There's something definitely a bit wrong about the following code, but I'm having trouble seeing exactly how to fix it. I think the

problem has something to do with my answer to part (a), among other things.

let rec eval env e =

match e with

 Number n -> n

| Variable x -> lookup x env

| Binop (op,e1,e2) -> do_binop (op, eval env e1, eval env e2)

| IfExpr (cond,thenpt,elsept) ->

if eval env cond <> 0 then

eval env thenpt

else

eval env elsept

| Call (f,args) ->

let FuncDef (formals,func_expr,er) = lookup f env in

let actuals = List.map (eval env) args in

let env' = fold_left (function env (formal,actual) -> define formal (VarDef actual) env) !er (combine formals actuals) in

eval env' func_expr

| Let (x,e1,e2) ->

let env' = define x VarDef (eval env e1) env in

eval env' e2

| Func (f,xs,e1,e2) ->

let env' = define f FuncDef (xs,e1,env) env in

eval env' e2

(c)

Environment at point of definition of twice

Name

Definition

Why

twice

<As in code>

In the environment where it's being defined, since functions can be recursive

f

Whatever we pass in
Parameter of twice

Environment at point of definition of ff

twice

<As before>

f

<As before>

ff

ff(x) = f(f(x))

In the environment where it's being defined, since functions can be recursive

Environment at point of definition of square

twice

<As before>

square

<As in code>

In the environment where it's being defined, since functions can be recursive

x

Whatever we pass in
Parameter of square

Environment at point of definition of fourth

twice

<As before>

square

<As before>

fourth

<As in code>

In the environment where it's being defined, since functions can be recursive

(d)

Not sure.
