Stuart Golodetz

Compilers

Tutorial 2
In these exercises, assume that the abstract syntax of expressions is as follows:

type expr =


  Number of int


| Variable of ident


| Binop of op * expr * expr;;

5.1

Define a function

subst : ident -> expr -> expr -> expr

so that subst x e' e is the result of substituting e' for the variable x throughout the expression e.

    Now consider the state-based interpreter of Section 5.1. Prove by structural induction that for all states s,

eval s (subst x e' e) = eval (update x (eval s e') s) e

Deduce that the two programs x := e'; x := e and x := e'' are equivalent, where e'' = subst x e' e.

Answer:

let rec subst x e' e =


match e with



  Number n -> Number n



| Variable v -> if v = x then e' else Variable v



| Binop (op, e1, e2) -> Binop (op, subst x e' e1, subst x e' e2);;

Proof:

Base Cases

i) Number n

LHS

= eval s (subst x e' (Number n))

= eval s (Number n)



{defn. of subst}

= n





{defn. of eval}

RHS

= eval (update x (eval s e') s) (Number n)

= n





{defn. of eval, since eval s (Number n) = n for any s}

ii) Variable x

LHS

= eval s (subst x e' (Variable x))

= eval s e'

RHS

= eval (update x (eval s e') s) (Variable x)

= fetch x (update x (eval s e') s)

{defn. of eval}

= eval s e'




{since by the law on p.63, fetch x (update x v s) = v}

iii) Variable y (y /= x)

LHS

= eval s (subst x e' (Variable y))

= eval s (Variable y)



{defn. of subst}

= fetch y s




{defn. of eval}

RHS

= eval (update x (eval s e') s) (Variable y)

= fetch y (update x (eval s e') s)

{defn. of eval}

= fetch y s




{since by the law on p.63, fetch y (update x v s) = fetch y s}

Inductive Step

Hypothesis: The result holds for sub-expressions e1 and e2 in the following.

Binop (w, e1, e2)

LHS

= eval s (subst x e' (Binop (w, e1, e2)))

= eval s (Binop (w, subst x e' e1, subst x e' e2))




{defn. of subst}

= do_binop w (eval s (subst x e' e1)) (eval s (subst x e' e2))



{defn. of eval}

= do_binop w (eval (update x (eval s e') s) e1) (eval (update x (eval s e') s) e2)
{hypothesis}

= eval (update x (eval s e') s) (Binop (w, e1, e2))




{defn. of eval}

= RHS

The RHS is doing x := e'; x := e, since update x (eval s e') s is x := e', and then we evaluate e. The

fact that it gets stored in x is coincidental. The LHS is doing x := e'' = subst x e' e, since we're

evaluating subst x e' e. Once again, the fact that it gets stored in x is coincidental. Since the LHS

and the RHS are the same (as just proved), the two programs must be equivalent.

5.2

Some machines have an expression stack implemented in hardware, but with a finite limit on its depth. For these

machines, it is important to generate postfix code that makes the maximum stack depth reached during execution as

small as possible.

(a) Define a function max_depth : inst list -> int (where inst is the type of instructions defined in Section 5.2)

    that gives the maximum stack depth needed to execute a list of instructions.

type inst =


  CONST of int


(* Load constant (value) *)


| LOAD of ident


(* Load value (name) *)


| MONOP of op


(* Perform unary operation (op) *)


| BINOP of op;;


(* Perform binary operation (op) *)

let stack_effect =


function



  CONST _ -> 1

(* Loads it onto the stack, so the stack depth increases by 1 *)



| LOAD _ -> 1


(* Loads it onto the stack, so the stack depth increases by 1 *)



| MONOP _ -> 0

(* Consider unary minus; takes number off top, negates it, pushes it back on *)



| BINOP _ -> -1;;

(* Consider binary plus; takes two numbers off top, adds, puts result back on *)

let rec max_depth =


function



  [] -> 0



| x :: xs -> stack_effect x + max_depth xs;;

Or alternatively (if I've got the right syntax?):

let max_depth xs =


function



fold_right (+) xs 0;;

(b) Let the SWAP instruction be defined so that it swaps the two top elements of the stack. Show how to use this

    instruction to evaluate the expression 1/(1+x) without ever having more than two items on the stack.

Instruction


Stack (after executing the instruction)

CONST 1



[1]

LOAD x



[1,x]

BINOP Add



[1+x]

CONST 1



[1+x,1]

SWAP




[1,1+x]

BINOP Divide



[1/(1+x)]

(c) Prove that if expression e1 can be evaluated in depth d1 and e2 can be evaluated in depth d2, then Binop (w,e1,e2)

    can be evaluated in depth

min (max d1 (d2+1)) (max (d1+1) d2)

Write a function cost : expr -> int that calculates the stack depth that is needed to evaluate an expression by this

method. Show that if e has fewer than 2^N operands, then cost e <= N.

Proof:

Binop (w, e1, e2)

Instruction



Stack (after executing the instruction(s))

<Steps to evaluate e1>

[<Result of e1>]

i) Note that during the previous calculation, the stack size never grows beyond d1. This is obvious, since the stack

   started off empty.

<Steps to evaluate e2>

[<Result of e1>,<Result of e2>]

ii) Note that during the previous calculation, the stack never grows beyond d2+1. The 1 is because there was one element

    on the stack after evaluating e1.

iii) In all of this, the largest the stack got was max d1 (d2+1).

Now, since we have the SWAP instruction, we could actually have evaluated them the other way round, if the stack would

have been less deep, in which case the largest the stack got was max (d1+1) d2, by symmetry. So the best we can do is

the minimum of these two, which is the expression given. Note that the SWAP instruction doesn't make the stack grow,

which is intuitively obvious but crucial.

let rec cost =


function



  Number _ -> 1

(* A CONST instruction pushes the number onto the (initially empty) stack *)



| Variable _ -> 1

(* A LOAD instruction pushes the value of the variable onto the stack *)



| Binop (w, e1, e2) ->




let d1 = cost e1 in




let d2 = cost e2 in




min (max d1 (d2+1)) (max (d1+1) d2);;

Proof (by induction):

Base Case (N = 1)

Single operand, one of:

cost (Number _) = 1 <= 1

Variable _ = 1 <= 1

So the base case holds.

Inductive Step

Hypothesis: The result holds for the sub-expressions e1 and e2 in

Binop (w, e1, e2)

Suppose the actual number of operands of Binop (w, e1, e2) is Na, such that Na < 2^N. Without loss of generality(*), we

can assume that N is the next power of 2 above Na. We know that N = floor(lg(2*Na)).

(*) Note that if e has fewer than 2^N operands, then cost e <= N, but also cost e <= 2*(N+m), for any positive m. We

    should assume that N is the next power of 2 above Na, because we want the tightest possible result.

Suppose that the actual number of operands of e1 is Xa, and that of e2 is Ya, such that Xa + Ya = Na, where we know

that Xa >= 1 and Ya >= 1.

Determine also X and Y, such that 2^X is the next power of 2 above Xa, and 2^Y is the next power of 2 above Ya.

We know that X = floor(lg(2*Xa)) and that Y = floor(lg(2*Ya)).

Now, we know by hypothesis that cost e1 <= X and cost e2 <= Y. We proceed as follows:

cost (Binop (w, e1, e2))

<= min (max X (Y+1)) (max (X+1) Y)

There are two possibilities to consider here:

i) X = Y

In this case, X < N and Y < N, since if X = Y = N, then since X and Y are the next powers of 2 above each of Xa and Ya,

we have that Na = Xa + Ya >= 2^(X-1) + 2^(Y-1) = 2^(N-1) + 2^(N-1) = 2*2^(N-1) = 2^N, which is a contradiction.

Continuing from the above, we have:

<= max X Y + 1

<= (N-1) + 1

= N

ii) X /= Y

Since the whole thing's symmetrical, we assume w.l.o.g. that X > Y. Then, continuing from the above, we have:

= min X (X+1)

= X

<= N

So either way, cost (Binop (w, e1, e2)) <= N.

(d) Write an expression compiler gen_expr : expr -> inst list that generates the code that evaluates an expression e

    within stack depth cost e. [Hint: use cost in your definition.]

let rec gen_expr =


function



  Number n -> [CONST n]



| Variable x -> [LOAD x]



| Binop (w, e1, e2) -> if cost e1 > cost e2 then gen_expr e1 @ gen_expr e2 @ [BINOP w]





       else gen_expr e2 @ gen_expr e1 @ [BINOP w];;

5.4

A simple language of expressions contains just variables and binary operators. Its abstract syntax is as follows:

type expr =


  Variable of ident


(* Variable (name) *)


| Binop of op * expr * expr

(* Binary operation *)

These expressions must be translated into code for a machine that has a single accumulator register A, but a large

collection of addressible temporary storage cells. The machine has the following instructions:

type inst =


  LOAD of addr


(* Load from address into A *)


| STORE of addr


(* Store from A into address *)


| BINOP of op * addr


(* Perform binary operation *)

Each address (type addr) is either the name of a variable or the number of a temporary cell:

type addr =


  Var of ident



(* Address of variable (name) *)


| Temp of temp


(* Temporary cell *)

Thus, the instruction LOAD (Var x) loads the value of variable x into A, the instruction STORE (Temp t) stores the

value in A into temporary cell t, and the instruction BINOP (Minus, Var y) subtracts the value of variable y from the

contents of A and puts the result back in A. Each instruction has the same cost in space and execution time.

    The object program is generated by calling a function gen : inst -> unit that adds one instruction to the program.

Fresh temporary locations t1, t2, ... may be allocated by calling the function alloc_temp : unit -> temp; there is no

need to economize by reusing these locations.

(a) Write down code that evaluates the expression x - (y / z), leaving the result in the accumulator.

gen [LOAD (Var y)];

gen [BINOP (Divide, Var z)];

let t = alloc_temp() in

gen [STORE (Temp t)];

gen [LOAD (Var x)];

gen [BINOP (Minus, Temp t)];;

(b) Show, by giving the code for an example expression, that better code can be produced by taking into account the

    commutativity of operators like + and *.

Consider the expression x + (y / z). If we don't take commutativity into account, we end up with this code:

gen [LOAD (Var y)];

gen [BINOP (Divide, Var z)];

let t = alloc_temp() in

gen [STORE (Temp t)];

gen [LOAD (Var x)];

gen [BINOP (Add, Temp t)];;

Taking commutativity into account, we get instead:

gen [LOAD (Var y)];

gen [BINOP (Divide, Var z)];

gen [BINOP (Add, Var x)];;

(c) Define a pair of functions trans_acc : expr -> unit and trans_mem : expr -> addr that together generate code for an

    arbitrary expression. The function trans_acc should leave the value of the expression in the accumulator A, and

    trans_mem should leave the value in memory, returning its address. At this stage, you need not exploit commutativity

    of operators.

let rec trans_acc =


function



  Variable x -> gen [LOAD (Var x)]



| Binop (w, e1, e2) ->




let t = trans_mem e2 in




trans_acc e1;




gen [BINOP (w, Temp t)];;

let rec trans_mem e =


function



trans_acc e;



let t = alloc_temp() in



gen [STORE (Temp t)];



t;;

(d) Show how to modify your definitions so as to generate code using the best evaluation order. You may assume a test

    commutative : op -> bool that identifies commutative operators. You need not consider optimizations that might

    result from repeated sub-expressions or associative properties of operators.

        Hint: define mutually recursive functions cost_acc e and cost_mem e that calculate respectively the cost of

    computing the value of expression e and leaving the result in the accumulator or in memory.

let rec cost_acc =


function



  Variable x -> 1



| Binop (

TODO

5.7

The code we have been generating for while statements puts code for the test first, and code for the body afterwards.

An alternative translation reverses the order: the code for the test is put after the code for the body, and jumps back

to the body if another iteration is needed. The whole loop begins with an unconditional branch to the test. Sketch the

layout of code that follows this translation scheme, and show how to generate this code in gen_stmt, using gen_cond as

appropriate. By counting the number of jump instructions executed in the program

i := 0; while i < n do i := i + 1 end

explain why this code is better than that suggested in the text.

Layout:

JUMP testLabel

LABEL loopLabel

<loop body>

LABEL testLabel

gen_cond true loopLabel <condition>

Generating it:

let rec gen_stmt =


function ...


| WhileStmt (test, body) ->



let loopLabel = label() and testLabel = label() in



gen (JUMP testLabel);



gen (LABEL loopLabel);



gen_stmt body;



gen (LABEL testLabel);



gen_cond true loopLabel test;


| ...

Counting the number of jumps:

In the original version, we did 2*n jumps, in the new version we're only doing n+1 jumps. The new version is therefore

better because we've eliminated all the redundant jumps from the bottom of the loop back to the top.
