Compilers
Lab 5 – Report
Introduction
The purpose of the practical was to add recursive procedures with nesting and (optionally) procedural parameters to an existing compiler.
The Code
The bits of code I’ve added are highlighted in bold. Large amounts of the original code are snipped out for brevity, and the listing has been tidied up somewhat from the version on disk. Since later parts of the practical involved modifying parts we’d changed earlier (e.g. getting the static link right, I’ve just presented the final version of the code, with everything working). Explanatory comments follow the code.

kgen.ml
...
let level = ref 0;;

let gen_addr lev off =

if lev = 0 then

gen (GLOBAL off)

else

gen (LOCAL (!level - lev, off));;

(* |gen_expr| -- generate code for an expression *)

let rec gen_expr =

function

Variable x ->

mark_line x.x_line;

let d = get_def x in

begin

match d.d_guts with

VarDef off ->

gen_addr d.d_level off;

gen LOAD

| ProcDef (lab, nargs) ->

gen (LOCAL (!level - d.d_level + 1, 0));

gen (PUSHL lab);

gen (PACK)

end

...

| Call (p, args) ->

mark_line p.x_line;

let d = get_def p in

begin

match d.d_guts with

ProcDef (lab, nargs) ->

List.iter gen_expr (List.rev args);

gen (LOCAL (!level - d.d_level + 1, 0));

gen (PUSHL lab);

gen (CALL nargs)

| VarDef off ->

List.iter gen_expr (List.rev args);

gen_addr d.d_level off;

gen (LOAD);

gen (UNPACK);

gen (CALL (length args))

end;;

...
In gen_addr, we’re given the level (lev) of the variable and its offset (off). We know what level we’re currently at (!level), and we want to generate an instruction LOCAL (d,o) such that d is the number of static links we need to follow and o is the offset. Since the number of static links we need to follow is !level – lev, we generate LOCAL (!level – lev, off), as above.
In gen_expr, if we see a procedure name in an expression, we push the two words of its closure onto the stack as instructed, then pack them into a single word with PACK. When we see a normal procedure call, we push its arguments in reverse order (right-to-left) onto the stack, then push its closure onto the stack, then call the procedure (via CALL nargs). When a procedure call contains a variable, we first push the arguments of the procedure in reverse order (right-to-left) onto the stack, then load the variable’s value, unpack it to recover the procedure’s closure, and finally call it with the given number of arguments.
ksim.ml
...
let rec follow_links n frameBase =

if n = 0 then frameBase

else follow_links (n-1) mem.(frameBase + 2);;
(* |exec_inst| -- execute an instruction *)

let exec_inst =

function

...

| LOCAL (d, o) ->
push (follow_links d !bp + o)

...
...
The modified case in exec_inst simply pushes the address of the memory word that is at offset o from the base of the stack frame reached by following d links on the static chain, as per 5.4 (2) in the instructions. It does this by calling follow_links, which follows d static links, and then adding the offset to the result. Finally, it pushes the address of the memory word onto the stack. The way follow_links works is fairly simple: if there are no links to follow, just return what we had; otherwise, follow one link (by replacing what we had with the static link for this activation record) and recurse, decreasing the number of links to follow by one.
check.ml
...
(* |check_expr| -- check and annotate an expression *)

let rec check_expr env =

function

...

| Variable x ->

let d = lookup_def env x in

begin

match d.d_guts with

VarDef _ -> ()

| ProcDef _ -> ()

end

...

| Call (p, args) ->

let d = lookup_def env p in

begin

match d.d_guts with

VarDef _ -> ()

| ProcDef (lab, nargs) ->

if length args <> nargs then

sem_error "procedure $ needs $ arguments" [fStr p.x_name; fNum nargs];

end;

List.iter (check_expr env) args;;

...
Both of these are minor changes. The first allows procedure names to be used as identifiers in expressions, the second allows variables to be used as the procedure names in calls (as per 5.6 (1) in the instructions). We’ve replaced semantic error messages by (), which does nothing.
But does it work?! (a.k.a. “The Test Cases”)
fac0.p

var n, f;

proc fac();

begin

if n = 0 then

return f;

else

f := f*n; n := n-1;

return fac()

end

end;

begin

n := 10; f := 1;

print fac()

end.

Output:
 0: CONST 10

; line 17

 1: GLOBAL 0

 2: STORE

 3: CONST 1

 4: GLOBAL 1

 5: STORE

 6: LOCAL (0, 0)
; line 18

 7: PUSHL L1

 8: CALL 0

 9: PRINT

 10: STOP

 11: LABEL L1

; line 6

 11: FRAME 0

 12: GLOBAL 0

; line 8

 13: LOAD

 14: CONST 0

 15: JUMPC (neq, L2)

 16: GLOBAL 1

; line 9

 17: LOAD

 18: RETURN

 19: JUMP L3

 20: LABEL L2

 20: GLOBAL 1

; line 11

 21: LOAD

 22: GLOBAL 0

 23: LOAD

 24: BINOP times

 25: GLOBAL 1

 26: STORE

 27: GLOBAL 0

 28: LOAD

 29: CONST 1

 30: BINOP minus

 31: GLOBAL 0

 32: STORE

 33: LOCAL (1, 0)

; line 12

 34: PUSHL L1

 35: CALL 0

 36: RETURN

 37: LABEL L3

 37: ENDPROC

Executing...

> 3628800

Finished

This fairly clearly works, since 10! = 3628800, but I’ll explain the generated code anyway to make the case that it works a little more convincingly. Firstly, I’ll equate the variables in the program with how they’re represented in the generated code:
n
GLOBAL 0

f
GLOBAL 1

The first few lines simply do n := 10; f := 1. The interesting bit comes on line 6, where LOCAL (0,0) pushes the static link for the call, namely the current base pointer. We then do the rest of the call, which entails jumping to L1. There are no local variables, so we have FRAME 0. We then load n and compare it to zero. If it’s equal to zero, then we don’t do the jump on line 15, and instead return 1. Otherwise, we load f, load n, multiply them, store the result in f, load n, load 1, subtract the 1 from the n and store it back into n. Then we push the static link for the recursive call, which should be the same as the static link for the first call of fac, by doing LOCAL (1,0). Finally, we recurse, and return. Note that the result of the recursive call will end up on the stack, and then we’ll execute the RETURN. When we finally return from the first call of fac, we print the result and end.
fac.p

proc fac(i);

begin

if i = 0 then

return 1

else

return i * fac(i-1)

end

end;

begin

print fac(10)

end.
Output:
 0: CONST 10

; line 14

 1: LOCAL (0, 0)

 2: PUSHL L1

 3: CALL 1

 4: PRINT

 5: STOP

 6: LABEL L1

; line 4

 6: FRAME 0

 7: LOCAL (0, 3)
; line 6

 8: LOAD

 9: CONST 0

 10: JUMPC (neq, L2)

 11: CONST 1

 12: RETURN

 13: JUMP L3

 14: LABEL L2

 14: LOCAL (0, 3)
; line 9

 15: LOAD

 16: LOCAL (0, 3)

 17: LOAD

 18: CONST 1

 19: BINOP minus

 20: LOCAL (1, 0)

 21: PUSHL L1

 22: CALL 1

 23: BINOP times

 24: RETURN

 25: LABEL L3

 25: ENDPROC

Executing...

> 3628800

Finished
Again, this is quite clearly correct. Once again I’ll explain the generated code to show this. Starting from the top, we push 10 onto the stack and call fac. The static link we push on is the current base pointer. As a result of the call, we jump to L1. The fac procedure has no local variables, so we have FRAME 0 once again. LOCAL (0,3) on line 7 refers to i, since the parameters to the function are found at [bp+3] upwards. We load this, then compare it to 0, returning 1 if it equals zero. Otherwise, we load it again, load it and subtract one from it to form the argument to the recursive call, recurse (pushing the correct static link by LOCAL (1,0)) and finally multiply, giving us i * fac(i – 1), as required. We then return this. Finally, once we’ve returned from our first call of fac, we print the result and end.
paramorder.p

(*

paramorder.p

This program tests that the parameters are being evaluated in the right order (right-to-left).

*)

var i;

proc g();

begin

i := i+5;

return i

end;

proc h();

begin

i := i*7;

return i

end;

proc f(j,k);

begin

return j;

end;

begin

i := 1;

print f(g(),h())

end.
Output:
 0: CONST 1

; line 28

 1: GLOBAL 0

 2: STORE

 3: LOCAL (0, 0)
; line 29

 4: PUSHL L2

 5: CALL 0

 6: LOCAL (0, 0)

 7: PUSHL L1

 8: CALL 0

 9: LOCAL (0, 0)

 10: PUSHL L3

 11: CALL 2

 12: PRINT

 13: STOP

 14: LABEL L1

; line 10

 14: FRAME 0

 15: GLOBAL 0

; line 12

 16: LOAD

 17: CONST 5

 18: BINOP plus

 19: GLOBAL 0

 20: STORE

 21: GLOBAL 0

; line 13

 22: LOAD

 23: RETURN

 24: ENDPROC

 25: LABEL L2

; line 16

 25: FRAME 0

 26: GLOBAL 0

; line 18

 27: LOAD

 28: CONST 7

 29: BINOP times

 30: GLOBAL 0

 31: STORE

 32: GLOBAL 0

; line 19

 33: LOAD

 34: RETURN

 35: ENDPROC

 36: LABEL L3

; line 22

 36: FRAME 0

 37: LOCAL (0, 3)
; line 24

 38: LOAD

 39: RETURN

 40: ENDPROC

Executing...

> 12

Finished
This clearly demonstrates the order in which the parameters are evaluated. If they were evaluated in left-to-right order, we’d get 42, since

(1 + 5) * 7 = 6 * 7 = 42. As shown above, they’re evaluated in right-to-left order, so we get 1 * 7 + 5 = 12.
flip.p

(*

flip.p

This program is supposed to do something along the lines of Haskell's

flip function.

*)

var fs;

proc flip(f);

proc p(x,y);

begin

return f(y,x);

end;

begin

return p

end;

proc subtract(x,y);

begin

return x - y

end;

begin

fs := flip(subtract);

print fs(5,3)

end.
Output:

 0: LOCAL (0, 0)
; line 25

 1: PUSHL L2

 2: PACK

 3: LOCAL (0, 0)

 4: PUSHL L1

 5: CALL 1

 6: GLOBAL 0

 7: STORE

 8: CONST 3

; line 26

 9: CONST 5

 10: GLOBAL 0

 11: LOAD

 12: UNPACK

 13: CALL 2

 14: PRINT

 15: STOP

 16: LABEL L1

; line 10

 16: FRAME 0

 17: LOCAL (0, 0)
; line 16

 18: PUSHL L3

 19: PACK

 20: RETURN

 21: ENDPROC

 22: LABEL L3

; line 11

 22: FRAME 0

 23: LOCAL (0, 3)
; line 13

 24: LOAD

 25: LOCAL (0, 4)

 26: LOAD

 27: LOCAL (1, 3)

 28: LOAD

 29: UNPACK

 30: CALL 2

 31: RETURN

 32: ENDPROC

 33: LABEL L2

; line 19

 33: FRAME 0

 34: LOCAL (0, 3)
; line 21

 35: LOAD

 36: LOCAL (0, 4)

 37: LOAD

 38: BINOP minus

 39: RETURN

 40: ENDPROC

Executing...

> -2

Finished
Here, -2 is clearly the correct answer, since flip(subtract) of 5 and 3 is 3 – 5 = -2.
sumpow.p

proc sumpow(n, k);

var m, s;

proc pow(p);

var j, q;

begin

j := 0; q := 1;

while j < k do

j := j+1; q := q*p

end;

return q

end;

begin

m := 0; s := 0;

while m < n do

m := m + 1;

s := s + pow(m)

end;

return s

end;

begin

print sumpow(5, 4)

end.
Output:
 0: CONST 4

; line 27

 1: CONST 5

 2: LOCAL (0, 0)

 3: PUSHL L1

 4: CALL 2

 5: PRINT

 6: STOP

 7: LABEL L1

; line 4

 7: FRAME 2

 8: CONST 0

; line 18

 9: LOCAL (0, -1)

 10: STORE

 11: CONST 0

 12: LOCAL (0, -2)

 13: STORE

 14: LABEL L3

 14: LOCAL (0, -1)
; line 19

 15: LOAD

 16: LOCAL (0, 3)

 17: LOAD

 18: JUMPC (geq, L4)

 19: LOCAL (0, -1)
; line 20

 20: LOAD

 21: CONST 1

 22: BINOP plus

 23: LOCAL (0, -1)

 24: STORE

 25: LOCAL (0, -2)
; line 21

 26: LOAD

 27: LOCAL (0, -1)

 28: LOAD

 29: LOCAL (0, 0)

 30: PUSHL L2

 31: CALL 1

 32: BINOP plus

 33: LOCAL (0, -2)

 34: STORE

 35: JUMP L3

 36: LABEL L4

 36: LOCAL (0, -2)
; line 23

 37: LOAD

 38: RETURN

 39: ENDPROC

 40: LABEL L2

; line 7

 40: FRAME 2

 41: CONST 0

; line 10

 42: LOCAL (0, -1)

 43: STORE

 44: CONST 1

 45: LOCAL (0, -2)

 46: STORE

 47: LABEL L5

 47: LOCAL (0, -1)
; line 11

 48: LOAD

 49: LOCAL (1, 4)

 50: LOAD

 51: JUMPC (geq, L6)

 52: LOCAL (0, -1)
; line 12

 53: LOAD

 54: CONST 1

 55: BINOP plus

 56: LOCAL (0, -1)

 57: STORE

 58: LOCAL (0, -2)

 59: LOAD

 60: LOCAL (0, 3)

 61: LOAD

 62: BINOP times

 63: LOCAL (0, -2)

 64: STORE

 65: JUMP L5

 66: LABEL L6

 66: LOCAL (0, -2)
; line 14

 67: LOAD

 68: RETURN

 69: ENDPROC

Executing...

> 979

Finished
Once again, this definitely works (it gives us the answer 979 which we were expecting). Explaining the code is slightly trickier this time round though (it’s longer). We start off by pushing the parameters to sumpow onto the stack in reverse order. We then call sumpow, pushing the current value of bp as our static link. As a result of this, we jump to L1. The procedure sumpow has two local variables, so we allocate space for them on the stack via our FRAME 2 instruction. We set them both to 0, then compare m (LOCAL (0,-1)) to n (LOCAL (0,3)). If m < n, then we don’t do the jump on line 18, and instead we add one to m. We then load s, load m as the parameter to pow, call pow (using the current value of bp as our static link) and finally add the two together and store the result in s. Then we jump back up to the top of the loop. Once out of the loop, we load s onto the stack as our return value, and return. Once we’ve returned from sumpow, we print the result and end.
There’s more yet to tell, though. When we called pow, we jumped to L2 as part of the call. The procedure pow has two parameters, so we allocate space for them on the stack via our FRAME 2 instruction on line 40 (well, the second line marked 40, anyway). We then do the two assignments, and begin the while loop on line 47. Here we must compare j to k. Well, j is the first local variable, so we can access it via LOCAL (0,-1). The variable k, on the other hand, was an argument to sumpow (specifically the second argument, meaning its offset from the base pointer when we were in sumpow was 4). To access it, we have to follow a static link back up. We access k via LOCAL (1,4). If j < k, then we don’t do the jump on line 51, and instead load j, add 1 to it, multiply q by p (LOCAL (0,3)) and jump back to the top of the loop. When we exit the loop, we return q, by loading it onto the stack and then returning.
sumpow2.p

proc sum(n, f);

var m, s;

begin

m := 0; s := 0;

while m < n do

m := m + 1;

s := s + f(m)

end;

return s

end;

proc sumpow(n, k);

proc pow(p);

var j, q;

begin

j := 0; q := 1;

while j < k do

j := j+1; q := q*p

end;

return q

end;

begin

return sum(n, pow)

end;

begin

print sumpow(5, 4)

end.
Output:

 0: CONST 4

; line 32

 1: CONST 5

 2: LOCAL (0, 0)

 3: PUSHL L2

 4: CALL 2

 5: PRINT

 6: STOP
 7: LABEL L1 ; line 4

 7: FRAME 2

 8: CONST 0 ; line 7

 9: LOCAL (0, -1)

 10: STORE

 11: CONST 0

 12: LOCAL (0, -2)

 13: STORE

 14: LABEL L4

 14: LOCAL (0, -1)
; line 8

 15: LOAD

 16: LOCAL (0, 3)

 17: LOAD

 18: JUMPC (geq, L5)

 19: LOCAL (0, -1)
; line 9

 20: LOAD

 21: CONST 1

 22: BINOP plus

 23: LOCAL (0, -1)

 24: STORE

 25: LOCAL (0, -2)
; line 10

 26: LOAD

 27: LOCAL (0, -1)

 28: LOAD

 29: LOCAL (0, 4)

 30: LOAD

 31: UNPACK
 32: CALL 1

 33: BINOP plus

 34: LOCAL (0, -2)

 35: STORE

 36: JUMP L4

 37: LABEL L5

 37: LOCAL (0, -2)
; line 12

 38: LOAD

 39: RETURN

 40: ENDPROC
 41: LABEL L2

; line 15

 41: FRAME 0

 42: LOCAL (0, 0)
; line 28

 43: PUSHL L3

 44: PACK
 45: LOCAL (0, 3)

 46: LOAD

 47: LOCAL (1, 0)

 48: PUSHL L1

 49: CALL 2

 50: RETURN

 51: ENDPROC
 52: LABEL L3

; line 17

 52: FRAME 2

 53: CONST 0

; line 20

 54: LOCAL (0, -1)

 55: STORE

 56: CONST 1

 57: LOCAL (0, -2)

 58: STORE

 59: LABEL L6

 59: LOCAL (0, -1)
; line 21

 60: LOAD

 61: LOCAL (1, 4)

 62: LOAD

 63: JUMPC (geq, L7)

 64: LOCAL (0, -1)
; line 22

 65: LOAD

 66: CONST 1

 67: BINOP plus

 68: LOCAL (0, -1)

 69: STORE

 70: LOCAL (0, -2)

 71: LOAD

 72: LOCAL (0, 3)

 73: LOAD

 74: BINOP times

 75: LOCAL (0, -2)

 76: STORE

 77: JUMP L6

 78: LABEL L7

 78: LOCAL (0, -2)
; line 24

 79: LOAD

 80: RETURN

 81: ENDPROC

Executing...

> 979

Finished
This is the stage (length of program?) at which I’ve decided to switch to highlighting the interesting bits of the code rather than explaining the whole thing. The first interesting bit is:
27: LOCAL (0, -1)

28: LOAD

29: LOCAL (0, 4)

30: LOAD

31: UNPACK
32: CALL 1
This pushes the parameter m for f(m) onto the stack, then pushes the parameter f onto the stacks, unpacks it into the closure for (in this case) pow and calls the function.

The other interesting bit is:

42: LOCAL (0, 0)
; line 28

43: PUSHL L3

44: PACK
This pushes the closure for pow onto the stack, and packs it so that it can be passed as a parameter.
The rest of the code is not hugely different from the sort of thing we’ve seen above, so I’m not going to explain it in detail. It clearly works, producing the same answer (979) as before.
digits.p
var q;

proc search(k, n, avail);

var d, nn;

proc avail1(x);

begin

if x <> d then

return avail(x)

else

return 0

end

end;

begin

if k = 10 then

print n

else

d := 1;

while d < 10 do

nn := 10 * n + d;

if avail(d) and (nn mod k = 0) then

q := search(k+1, nn, avail1)

end;

d := d+1

end

end;

return 0

end;

proc all(x);

begin

return 1

end;

begin

q := search(1, 0, all)

end.
Output:

 0: LOCAL (0, 0)
; line 41

 1: PUSHL L2

 2: PACK

 3: CONST 0

 4: CONST 1

 5: LOCAL (0, 0)

 6: PUSHL L1

 7: CALL 3

 8: GLOBAL 0

 9: STORE

 10: STOP

 11: LABEL L1

; line 6

 11: FRAME 2

 12: LOCAL (0, 3)
; line 20

 13: LOAD

 14: CONST 10

 15: JUMPC (neq, L4)

 16: LOCAL (0, 4)
; line 21

 17: LOAD

 18: PRINT

 19: JUMP L5

 20: LABEL L4

 20: CONST 1 ; line 23

 21: LOCAL (0, -1)

 22: STORE

 23: LABEL L6

 23: LOCAL (0, -1)
; line 24

 24: LOAD

 25: CONST 10

 26: JUMPC (geq, L7)

 27: CONST 10 ; line 25

 28: LOCAL (0, 4)

 29: LOAD

 30: BINOP times

 31: LOCAL (0, -1)

 32: LOAD

 33: BINOP plus

 34: LOCAL (0, -2)

 35: STORE

 36: LOCAL (0, -1)
; line 26

 37: LOAD

 38: LOCAL (0, 5)

 39: LOAD

 40: UNPACK

 41: CALL 1

 42: JUMPB (false, L8)

 43: LOCAL (0, -2)

 44: LOAD

 45: LOCAL (0, 3)

 46: LOAD

 47: BINOP mod

 48: CONST 0

 49: JUMPC (neq, L8)

 50: LOCAL (0, 0)
; line 27

 51: PUSHL L3

 52: PACK

 53: LOCAL (0, -2)

 54: LOAD

 55: LOCAL (0, 3)

 56: LOAD

 57: CONST 1

 58: BINOP plus

 59: LOCAL (1, 0)

 60: PUSHL L1

 61: CALL 3

 62: GLOBAL 0

 63: STORE

 64: JUMP L9

 65: LABEL L8

 65: LABEL L9

 65: LOCAL (0, -1)
; line 29

 66: LOAD

 67: CONST 1

 68: BINOP plus

 69: LOCAL (0, -1)

 70: STORE

 71: JUMP L6

 72: LABEL L7

 72: LABEL L5

 72: CONST 0

 73: RETURN

 74: ENDPROC

 75: LABEL L3 ; line 10

 75: FRAME 0

 76: LOCAL (0, 3)
; line 12

 77: LOAD

 78: LOCAL (1, -1)

 79: LOAD

 80: JUMPC (eq, L10)

 81: LOCAL (0, 3)
; line 13

 82: LOAD

 83: LOCAL (1, 5)

 84: LOAD

 85: UNPACK

 86: CALL 1

 87: RETURN

 88: JUMP L11

 89: LABEL L10

 89: CONST 0

 90: RETURN

 91: LABEL L11

 91: ENDPROC

 92: LABEL L2 ; line 35

 92: FRAME 0

 93: CONST 1

 94: RETURN

 95: ENDPROC

Executing...

> 381654729

Finished
This program is even more complicated than the last one. The answer it produces is certainly correct:
3/1 = 3
38/2 = 19

381/3 = 127

3816/4 = 954

38165/5 = 7633

381654/6 = 63609

3816547/7 = 545221

38165472/8 = 4770684

381654729/9 = 42406081
Given both this and that I don’t feel any great urge to go through 96 lines of (what is essentially) assembly code and explain them one by one, I’ll assert at this point that the generated code is correct (it’s fairly complicated, so if the right answer’s being produced then it very likely is correct). I’m tolerably confident that it’s right, but I welcome (theoretically, at any rate) bug reports!
compose.p

var p;

proc compose(f, g);

proc fg(x);

begin

return f(g(x))

end;

begin

return fg

end;

proc dummy(f, g);

var a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

begin

return compose(f, g)

end;

proc add2(x); begin return x+2 end;

proc square(x); begin return x * x end;

begin

p := dummy(square, add2);

print p(2)

end.
Output:
 0: LOCAL (0, 0)
; line 25

 1: PUSHL L3

 2: PACK

 3: LOCAL (0, 0)

 4: PUSHL L4

 5: PACK

 6: LOCAL (0, 0)

 7: PUSHL L2

 8: CALL 2

 9: GLOBAL 0

 10: STORE

 11: CONST 2

; line 26

 12: GLOBAL 0

 13: LOAD

 14: UNPACK

 15: CALL 1

 16: PRINT

 17: STOP

 18: LABEL L1

; line 6

 18: FRAME 0

 19: LOCAL (0, 0)
; line 12

 20: PUSHL L5

 21: PACK

 22: RETURN

 23: ENDPROC

 24: LABEL L5

; line 7

 24: FRAME 0

 25: LOCAL (0, 3)
; line 9

 26: LOAD

 27: LOCAL (1, 4)

 28: LOAD

 29: UNPACK

 30: CALL 1

 31: LOCAL (1, 3)

 32: LOAD

 33: UNPACK

 34: CALL 1

 35: RETURN

 36: ENDPROC

 37: LABEL L2

; line 15

 37: FRAME 10

 38: LOCAL (0, 4)
; line 18

 39: LOAD

 40: LOCAL (0, 3)

 41: LOAD

 42: LOCAL (1, 0)

 43: PUSHL L1

 44: CALL 2

 45: RETURN

 46: ENDPROC

 47: LABEL L3

; line 21

 47: FRAME 0

 48: LOCAL (0, 3)

 49: LOAD

 50: CONST 2

 51: BINOP plus

 52: RETURN

 53: ENDPROC

 54: LABEL L4

; line 22

 54: FRAME 0

 55: LOCAL (0, 3)

 56: LOAD

 57: LOCAL (0, 3)

 58: LOAD

 59: BINOP times

 60: RETURN

 61: ENDPROC

Executing...

> 16

Finished
The answer here is clearly correct, since (2+2)2 = 16. I don’t want to go through the code in detail (at the time of writing, this report is already stretching to a huge 25 pages, and there are still more test cases to insert further up), but a quick scan of the code should be enough to convince the reader that the correct code is being generated.
