Advanced Data Structures and Algorithms Exercise Sheet 4

Stuart Golodetz

February 15, 2006

- 1. (a) How many trees are there in a binomial heap that contains 35,515 nodes?
 - (b) Illustrate the binomial heap obtained by inserting a node with key 21 and then a node with key 4 in the binomial heap below.
 - (c) Illustrate the binomial heap obtained by deleting the node with key 6 from the binomial heap below.

Answer

- (a) The easiest way to work this out is to convert 35,515 to binary and count the number of 1's, since an *n*-node binomial heap contains binomial tree B_i iff $b_i = 1$ where $b_k...b_1b_0$ is the binary representation of *n*. Accordingly, $35515_{10} = 1000101010111011_2$, whence there are 9 trees in the heap in question.
- (b) See separate sheet.
- (c) Likewise.
- 2. For question, see problem sheet.

Answer

See separate sheet.

3. For question, see problem sheet.

Answer

(a) Suppose *H* is a 2-universal family of hash functions as described. We're required to show (by definition) that for each pair of distinct keys $k, \ell \in U$:

$$#{h \in H : h(k) = h(\ell)} \le |H|/m$$

i.e. if h is drawn from H at random then the probability that k and ℓ hash to the same slot is at most 1/m. Well, as noted in the question, since H is 2-universal, if h is drawn from H at random then the pair $(h(k), h(\ell))$ is equally likely to be any of the m^2 elements of $\{0, ..., m-1\} \times \{0, ..., m-1\}$. So the probability that $h(k) = h(\ell)$ is given by $\frac{m}{m^2}$, since there are m ways for the two to be equal out of m^2 possibilities. (It's obvious why, but for completeness consider the following. To get $h(k) = h(\ell)$, there are $\#\{0, ..., m-1\} = m$ ways to pick h(k) and then $h(\ell)$ must be the same.) Well $\frac{m}{m^2} = \frac{1}{m}$, which is what we needed the probability to be less than or equal to. So we're done.

- (b) Depressingly, the only contribution I've managed to make towards answering this bit is to pedantically observe that ⟨a₀,..., a_n⟩ isn't an *n*-tuple: it's an *n* + 1-tuple. Judging by the rest of the question, it meant to say ⟨a₀,..., a_{n-1}⟩. Similarly for the *x* vector. When it comes to actually answering the question, I could do with some help!
- (c) The same goes for this bit.
- 4. For question, see problem sheet.

Answer

(a) Since n_i is the number of keys which hash to slot *i*, the number of collisions in slot *i* is given by $\binom{n_i}{2}$. So the number of collisions in total is:

$$\sum_{i=0}^{m-1} \binom{n_i}{2}$$

We actually need twice this number, though, because the pairs are *ordered*. A pair of colliding keys k and ℓ get counted twice, once as (k, ℓ) and once as (ℓ, k) . So our expression is:

$$2\sum_{i=0}^{m-1} \binom{n_i}{2}$$

In practice, of course, this is just $\sum_{i=0}^{m-1} {n_i P_2}$.

(b) We calculate as follows:

$$2\sum_{i=0}^{m-1} \binom{n_i}{2}$$

= $2\sum_{i=0}^{m-1} \frac{n_i!}{2(n_i-2)!}$
= $\sum_{i=0}^{m-1} n_i(n_i-1)$
= $\left(\sum_{i=0}^{m-1} n_i^2\right) - \left(\sum_{i=0}^{m-1} n_i\right)$
= $\left(\sum_{i=0}^{m-1} n_i^2\right) - n$
 $\ge \frac{1}{m} \left(\sum_{i=0}^{m-1} n_i\right)^2 - n$
= $\frac{n^2}{m} - n$
= $n^2 \left(\frac{1}{m} - \frac{1}{n}\right)$

{since each key in U must hash to one of the slots}

{using the hint}

 $\{$ since each key in U must hash to one of the slots $\}$

Proving the hint TODO

(c) There are $\#U \times \#U = n^2$ pairs of keys (k, ℓ) , of which we just proved at least $n^2 \left(\frac{1}{m} - \frac{1}{n}\right)$ are such that k and ℓ are distinct and $h(k) = h(\ell)$. Thus the probability that k and ℓ are distinct and $h(k) = h(\ell)$ for any particular pair of keys satisfies:

$$Pr[h(k) = h(\ell)] \ge \frac{n^2 \left(\frac{1}{m} - \frac{1}{n}\right)}{n^2} = \frac{1}{m} - \frac{1}{n}$$

(d) TODO